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ABSTRACT

The study defined under Contract NAS8-26214 required two

parallel efforts: 1) Determination of literal (non-numerical) attitude

stability criteria for idealized spinning flexible spacecraft, and 2)

Analytical support of a Marshall Space Flight Center computational

study of the dynamics of Skylab B. The latter study is continuing,

while the former has been the basis of the Ph. D. dissertation of

Frank J. Barbera, which constitutes the present report. The scope

of this report is described as follows.

The stability of spinning flexible satellites in a force-free

environment is analyzed. The satellite is modeled as a rigid core

having attached to it a flexible appendage idealized as a collection of

particles (point masses) interconnected by springs. Both Liapunov

and Routh-Hurwitz stability procedures are used where in the former

the Hamiltonian of the system, constrained through the angular

momentum integral so as to admit complete damping, is used as a

testing function. Equations of motion are written using the hybrid

coordinate formulation, which readily accepts a modal coordinate

transformation ultimately allowing truncation to a level amenable to

literal stability analysis. Closed form stability criteria are generated

for the first mode of a restricted appendage model lying in a plane

containing the system center of mass and orthogonal to the spin axis.

The effects of spin on flexible bodies are discussed by considering

a very elementary particle model. It is shown how the linearized

equations of motion for a non-spinning flexible appendage are modified

by spin. In particular, it is shown how appendage mounting can greatly

influence the natural frequencies of the structure. Stability criteria

for the simple particle model are used to duplicate the results of various

published studies. Results of analysis of this same particle model are

used to draw engineering judgments on a very,complex spacecraft, Sky-

lab B.
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Control of passively unstable spacecraft is briefly considered.

It is shown how a simple rigid rotor directed along the spin axis, or

a proportional controller representative of control moment gyros

(in the first approximation), can enhance stability.
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CONCLUSIONS AND RECOMMENDATIONS

The literal stability criteria developed in this report represent

unanticipated progress in the search for closed-form conditions for

attitude stability of spinning flexible spacecraft. These criteria have

a substantial utility in preliminary design of flexible appendages to

be attached to spinning spacecraft; they can be used for example to

provide a lower bound on stiffness requirements for the boom

structure on which masses must be deployed from Skylab B in order

to shift the vehicle principal axis of maximum inertia into orthogonality

with the solar panels. For a much simpler spacecraft (such as the

crossed-dipole configuration of Explorer XX), the multiple-mode

stability criteria available from this report may represent a definitive

conclusion, but for spacecraft as complex as Skylab these criteria are

merely preliminary. Yet it seems that the practical limits of algebraic

complexity have been reached in this study, so that further progress

in stability analysis must be accomplished with numerical methods.

Results of significance comparable to the stability criteria lie in

the interpretations of the influence of spin on the modal vibrations of

appendages of various structural configurations. Careful physical

interpretation of the behavior of highly idealized appendages suggests

for example, that the solar panels on the Orbital Workshop of Skylab B

would be less deleterious to stability if they were unfurled radially from

the vehicle spin axis, rather than tangentially from circles of varying

diameters centered on the spin axis. This conclusion comes too late to

influence the Skylab B solar panel configuration, but it may serve as a

practical guide in the design of future spacecraft. Furthermore, these

conceptual conclusions may help in the evaluation of numerical results

being generated for realistic models of solar panels on Skylab B or

subsequent spacecraft designs.
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The methods employed in this report are limited primarily

by their reliance on vehicle mathematical models consisting of

rigid bodies with flexible appendages. The primary recommendation

for further work is the proposal that a more general formulation be

developed, permitting the modeling of a spacecraft as a collection

of arbitrarily interconnected elastic substructures.
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NOMENCLATURE

CM center of mass

N location of system CM when steadily spinning

O location of system CM when non-spinning

Body B - portion of system identified as rigid (core)

Body A - portion of system identified as flexible (appendage)
A A^

{b} ~ vector basis fixed in Body B identified as (bl, b2,3

)

T=
A A A T 2

(x y, _Z)

{ n} inertial vector basis

Q point at interface between Body A and Body B

c vector from CM to N

cI ~vector from N to O

R' ~ vector from O to Q

R - c' + Rt

i th
r vector from. Q to location of i mass when system. is

not spinning
i th

Ai displacement vector of i mass induced by steady spin

i it i
r = r +

ii
u, u deformation vector and its representation in { b}

r ,r undeformed location of i
t h

particle from. point N, and
iits representation in {b}. Note: r =R + r

P g body generic position vector

a ~ inertial generic position vector

WLll U.L.L.LC- d 1ia.J m

H Hamiltonian

T kinetic energy of complete system.

V potential energy of complete system

Li,w ~ inertial angular velocity vector of { b} and its

representation in { b }
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Euler (attitude) angles

unloaded natural frequencies of simple particle

model

loaded natural frequencies of simple particle model

loaded natural frequencies of simple particle model

including centripetal acceleration terms

loaded natural frequency of i
t h

modal coordinate

Laplacian operator

inertia dyadic of complete system about point N and

its inertia matrix representation in { b}

inertia dyadic of core about point N and its inertia

matrix representation in { b}

inertia dyadic of appendage about point N and its

inertia matrix representation in { b}

inertia dyadic of undeformed appendage contribution

about point N and its inertia matrix representation

in {b}

inertia matrix about point N consisting of first

order appendage terms

inertia matrix about point N consisting of second

order appendage terms

IA + I having principal elements A,B, and C

core inertias of simple particle model

mass of i
t h

element

mass of complete system
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h bh h angular momentum vector, its representation in { b},

and its magnitude

E, E identity dyadic and its corresponding identity matrix

M mass matrix excluding CM shifts

M t mass matrix including CM shifts

G skew symmetric Coriolis coupling matrix
A
K non-spinning stiffness matrix

K ~ spinning stiffness matrix

q deformation column matrix

_ spin vector and its representation in vector basis { b}

assumed to be solely directed along b3

F
t

spin force in simple particle models

F~ preload force on examples I, II, and III, respectively

1 ~ column matrix of modal coordinates

(Db~ transformation matrix relating rY to q

rF location of particle (in simple particle model) prior
0

to spin

damping ratio

E N by 1 column matrix with all elements unity

r
x N by N diagonal matrix with rx (i = 1 to N) as its~~~~~~~X

elements

r ~ N by N diagonal matrix with F
i

(i = 1 to N) as its
y y

elements
T

6x sT M r E an N by 1 column matrix

T
6 = T M r E an N by 1 column matrix
y y-

F, 1', ?r -location of particle (in simple particle model)
x y z

subsequent to spin
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CHAPTER 1

STATEMENT OF THE PROBLEM

The concern with flexibility on spinning spacraft came into

prominence with the conclusion that flexible whip antennas on

Explorer I were responsible for its unexpected dynamic behavior

(See Reference 1; within the period of approximately 90 minutes

Explorer I departed from a motion approximating spin about an

inertially fixed axis to a motion of free precession with half cone

angle approaching 60 degrees.) Ever since the anomalistic

behavior of Explorer I the subject of flexibility effects on spinning

spacecraft has been the basis of numerous technical papers as well

as internal company reports. The results of these studies have

proved beneficial from both an educational and a practical point

of view.

Prior to the flight of Explorer I it had been generally

accepted that satellites would exhibit stable free rotation in

inertial space if the angular velocity vector was directed parallel

to a principal axis of either a maximum or minimum moment of

inertia, as predicted by rigid body stability analysis. Explorer I

conformed to this rule in that its spin axis was the axis of

minimum moment of inertia, and in fact the spacecraft was

inertially symmetric about the axis of spin, exhibiting a longitudinal

to transverse inertia ratio of approximately 70 to 1.

The analysis following Explorer I (Reference 1 and many sub-

sequent studies) led to the general conclusion that for a flexible spin-

ping satellite to exhibit stable free motion its axis of spin must be

restricted to that of the principal axis of maximum inertia; this

proposition is sometimes referred to as "the greatest moment of

inertia rule." The "energy sink" method was the dominating

analytical tool utilized in developing this result. The method is
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simply to model the spacecraft, as a rigid body having attached an

idealized non-moveable mechanical energy dissipator, i.e. an

energy sink. Analysis based upon energy sink methods resulted

in the conclusion that the motion must ultimately be characterized

by spinning in its minimum kinetic energy state. This minimum

energy state corresponds to spin about the principal axis of

maximum moment of inertia. Although the energy sink method is

not analytically rigorous the approach is generally accepted by the

engineering community since its results conform with the behavior

observed in actual flight. Hence the only stable rotational motion
*

for free quasirigid dissipative bodies is widely understood to be

spin about an inertially fixed principal axis of maximum moment of

inertia. Any formal, rigorous analytical technique used to

establish stability criteria for flexible spinning spacecraft must be

expected to produce this conclusion as a necessary condition.

The requirement of maximum inertia axis spin for attitude

stability could have significant impact on spacecraft design even

though the spacecraft in its nominal on-orbit mode of operation is

not spinning. For many designs it is desirable to spin the spacecraft

throughout its transfer ellipse (generally a Hohmann transfer) to

preclude the necessity of active control during the period of high

torques imparted to the spacecraft by burn of the apogee motor.

Moreover booster designs generally favor elongated spacecraft, so

that it is more convenient to spin about the axis of least inertia.

These considerations dictate the need for an estimate of energy

dissipation to determine if the coning angle growth is accepted over

the interval of spin. Energy sink methods have helped in these

estimates as well.
*

The term "quasirigid "means nonrigid but subject only to small
relative motions; this term therefore excludes rotors from the
vehicle, for example.
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Clearly the analyses conducted since Explorer I have proved

beneficial to spacecraft design, but the fact is that the ghost of

Explorer I still remains to haunt us. Since Explorer I there have

been at least four other spinning (or partially spinning) satellites that

in some way or another have exhibited degraded performance attri-

buted directly to flexibility effects - the latest of which is ATS 5

(Advanced Technology Satellite). (See Reference 2. )

It is clear that flexible spinning spacecraft will continue to be

designed and flown in the future. It is expected that many of these

satellites will exhibit large flexible appendages such as antenna

arrays or solar panels. Skylab B is a prime example of the latter.

The knowledge of previous studies coupled with the behavior of flown

spinning satellites will influence these designs. The dominant

influence will of course be "the greater moment of inertia rule."

However, the question remains as to whether satisfaction of this rule

is sufficient to assure stability of such spacecraft, or whether there

are other more demanding criteria required to be satisfied. The

search for and development of these latter criteria constitutes the

focal point of this dissertation.

That other criteria exist in addition to the requirement for

maximum inertia axis spin, is not at all surprising, in that one

would expect the stability of spinning spacecraft with very large

flexible appendages to be more precarious than spacecraft only

slightly non-rigid. Moreover we would expect criteria to emerge

which involve the modes of vibration and the natural frequencies of

the structure.

Probably the earliest attempt to explore the dynamics of

elastic spinning spacecraft was that by F. Buckens in 1963,

Reference (3), and again in mid 1967, Reference (4). His approach

in investigating the consequences of spin on flexible satellites was to

3



analyze equations of motion linearized about a constant spin. In the

first of these papers Buckens shows how the elastic modes couple

with the normal rigid body modes. Moreover he shows how the

system natural frequencies (coupled modes) may, in the presence

of flexibility, be lower than the rigid body modes, and thus suggest a

corresponding loss in stability. However, it was not until

Reference (4) that Buckens directly considered the question of

stability. Although he developed stability criteria for undamped

motion, his analysis with damping present was limited to evaluating

the frequency of the structure at the verge of instability. He ulti-

mately concludes .... "that the nutational modes are also damped

when damping exists in the elastic deformation modes, but the

corresponding damping is very low when one of these frequencies

becomes very small, which brings the system at the verge of

instability." However in all of Bucken's work it is assumed that the

spin frequency be very much smaller than the lowest natural

frequency at the elastic structure - a severe limitation. Nevertheless

his studies appear to be the analytical forerunner in the area of

spinning flexible spacecraft. In fact Buckens extended his work to

consider the effects of external torques including those induced by

interaction with the earth's magnetic and gravitational fields. (No

consideration of this subject is attempted in this dissertation.)

In August 1969 a NASA technical note appeared, Reference (5).

This study by T. W. Flatley was directed toward the stability of a

spacecraft idealized as a rigid body having attached to it four

symmetrically mounted flexible booms, commonly referred to as a

crossed-dipole configuration. The idealization was (and is) directly

applicable to a number of satellites, e. g., Alouette I and II. The

results of this study led to useful stability criteria descriptive of the

wobble motion of spacecraft identified by the cited idealization.

4



Flatley's approach to the problem was based upon energy

considerations. He considered a rotation where the spacecraft is

forced to spin about an axis skewed from the nominal spin axis with

the booms contributing to the total energy through strain energy

storage, i. e., potential energy. He compared this state with a

nominal spin state having an equivalent angular momentum and no

potential energy. Flatley then developed stability criteria by

suggesting that if the nominal state is stable then the energy associ-

ated with that state must be less than the energy associated with the

forced state. The potential energy is derived using beam deflection

theory and inertias of both states are developed by integrating over

the structure. Then with the aid of a digital computer stability

boundaries were generated and presented in the form of both curves

and tables. The results clearly show how stability is degraded as

the ratio of spin to radial boom stiffness increases.

In March of 1970 F. R. Vigneron presented a paper, Reference

(6), considering the same model as Flatley, i. e., a crossed-dipole

configuration. However his approach to the problem was completely

different. Vigneron linearized the equations of motion and then

simplified the set by noting that the equations descriptive of the

nutational behavior (wobble motion) separate from the equations

descriptive of motion about the spin axis. The former set, after

simplification of the vibrational equations to a single mode, were

then analyzed with the aid of a digital computer using Routh-Hurwitz

stability criteria. The results are presented in the form of graphs

delineating regions of stable and unstable motions. Moreover, he

observed that the boundaries were separated by a relatively simple

expression involving system inertias, the natural frequency of the

truncated mode, and the magnitude of spin. Vigneron's work was a

5



clear presentation on the subject leaving little doubt in the minds of

the reader concerning the validity of the results.

The subject matter was again studied by J. E. Rakowski and

M. L. Renard, presented at the Astrodynamics Conference in August

of 1970, Reference (7). Similarly to the work of Flatley, Rakowski

and Renard studied the nutational behavior of a torque free

satellite through energy considerations. As with their predecessors

they also directed their efforts toward a crossed-dipole configuration,

and with the aid of a digital computer presented stability boundaries.

However in order to develop these results they resorted to actually

solving the equations of motion retaining all nonlinear terms - a

needless effort. Probably their greatest contribution is in stressing

the fact that rotation must be considered in developing the modes of a

vibrating appendage. They rightfully point out that the modes

normally associated with a non-rotating contelevered boom are

inapplicable and, especially for large ratios of spin to stiffness, the

non-rotating modes may be totally erroneous.

In the same conference in which Rakowski and Renard pre-

sented their results another paper on the subject appeared, Reference

(8). This paper by L. Meirovitch presented a procedure for

developing stability criteria for flexible spinning satellites by using

the Hamilitonian as a Liapunov function. The paper was directed

toward the exposition of a general procedure for obtaining sufficient

conditions for stability and specific stability results were generated

for a rigid structure having attached to it a pair of symmetrical

booms directed along the spin axis. The results of this paper laid

the framework for Meirovitch's more general study in which he, in

conjunction with R. A. Calico, presented a procedure for generating

sharper conditions for stability; this paper was presented at the

6



Astrodynamics Specialist Conference exactly one year later

(August 1971), Reference (9). In this paper stability criteria are

developed for a mathematical idealization consisting of three pairs

of rigidly attached flexible rods, one pair along the spin axis and the

other two pair in a crossed-dipole configuration. Thus the model of

Reference (9) is a combination of the model considered in Reference

(8) and the model considered by both Flatley and Vigneron. Using the

Hamiltonian as a Liapunov function Calico and Meirovitch proceeded

to develop stability criteria of this three-pair boom model.

In addition to the references cited above the very recent work

by P.Y. Willems, Reference (10) must be mentioned. In this paper,

the author considers the attitude stability of a deformable gyrostat

(a dual spin satellite idealization). The effect of dissipation in either

section of the system is discussed and a rigorous method permitting

stability determination is set forth wherein the Hamiltonian is used as

a Liapunov function. (It is precisely this method which forms the

analytical foundation of our Chapter 3. ) To preclude algebraic

difficulties Willems limits his internal coordinates descriptive of

deformations to a single modal coordinate variable which is not

uniquely defined, but belongs to a prescribed class. Procedures for

selecting a specific modal coordinate for a specific system are not

discussed, this being set aside as a separate problem underlying

the stability analysis presented in Reference (10). Willems directed

his attention primarily to that portion of the stability criteria

descriptive of inertia constraints associated with dual spin space-

craft, but he generates a condition on the internal stiffness proper-

ties as well. As Willems did not extend his stiffness dependent

criteria to specific geometrically identifiable terms (these depending

on the choice of modal coordinate) it is difficult to compare his

results with ours, although conceptual similarities are identifiable.

7



To date then a number of studies, have been directed toward

the subject of spinning flexible spacecraft. Moreover the developed

stability criteria provide useful data to both the theoretician and the

practicing engineer. What then can we offer to either enhance or

augment these results? First of all it is clear that the cited studies

(except for the early work of Buckens and the recent work of Willems)

have been limited to pairs of booms. In this study we shall try to

develop stability criteria for a general flexible appendage. Although

we will succeed in developing a Liapunov function for the general

problem, in testing that function we will be forced to specialize to

the more restrictive case wherein the appendage lies in a plane

containing the center of mass and orthogonal to the spin axis. We

will examine this problem using both Liapunov and Routh-Hurwitz

stability procedures. As in References (8), (9), and (10), the

Hamiltonian is used as a Liapunov function: Chapters 3 and 4 are

directed toward this effort. However, even more than this, the

major contribution may very well be the analysis delineated in

Chapter 2. Here we examine the effects of spin and in particular

point out the significance of appendage mounting; this is a point

which can be completely overlooked by restricting analysis to radial

booms. Moreover if one tries to generalize the radial boom results

to more complicated structures the conclusions may be totally

erroneous, and in fact could lead to disastrous results in practice.

Also in Chapter 2 we analyze a very elementary particle model and

through suitable interpretation we show how this simple model can be

used to obtain literal (nonnumerical) results which essentially

duplicate the results of Flatley, Vigneron, Rokowski and Renard,
,

and Calico and Meirovitch. Thus these studies are tied together
*

As Calico and Meirovitch considered the out-of-plane as well as the
in-plane problem only a portion of their results is duplicated. We
consider the out-of-plane problem in Chapter 4 only superficially.

8



through the analysis of a simple particle model. The simplicity of

the model allows easy visualization and yet retains all the pertinent

features of spin-flexibility interaction.

As the order of business is the stability analysis of rotating

flexible spacecraft, we should at the outset investigate the concept of

stability (or probably more significantly the concept of instability) as

pertaining to the motions of interest. If one considers the conse-

quences of a small perturbation applied to a rigid body initially

rotating about a principal axis (major or minor) colinear with its

inertial angular momentum vector, the resulting motion is character-

ized by a rotation of its spin axis about a new inertially directed

angular momentum vector. (The new angular momentum vector is

of course the vector sum of the initial angular momentum vector and

the momentum vector introduced by the perturbation.) The space-
*

craft is said to "wobble" and the angle between the spin axis and the

momentum vector after perturbation is called "the wobble angle."

Because subsequent to sufficiently small perturbation this wobble

angle remains smaller than any preassigned value, the motion is

said to be Liapunov stable.

It is predicted by heuristic energy sink methods of analysis

that in the presence of a hypothetical non-moveable energy dissipator
* *

the spin axis will converge to the new angular momentum vector

,
Sometimes called precession, nutation, or even coning; although
the latter is usually restricted to the descriptive motion of axis-
symmetric spacecraft.

**
That the spin axis after perturbation converges to the new angular
momentum vector (as apposed to the momentum vector prior to per-
turbation) assures that the system is not completely damped when
the motion is described in terms of coordinates measuring the devia-
tion from the inertial orientation existing prior to perturbation. As
discussed in Chapter 3 this observation dictates significant con-
straints on the usage of the Hamiltonian as a Liapunov function.

9



if the spin axis is the axis of maximum moment of inertia, i. e., the

wobble angle decreases with time. Conversely, if the spin axis is

the axis of minimum moment of inertia the wobble angle will increase

with time. In the former case the motion is said to be asymptotically

stable whereas in the latter case the motion is said to be unstable.

However, this type of instability is acceptable for many applications,

i. e., spacecraft are still allowed to spin about their axis or least

moment of inertia for short periods of time, such as during transfer

ellipse. This of course requires the estimation of the energy dissi-

pation in the structure (a black art indeed, especially when the space-

craft contains either fuel tanks or heat pipes) to determine or at

least bound the amount of wobble angle increase over the time

interval of spin. Thus this type of instability may very well be

acceptable. In contrast, consider for example the type of

instability associated with spin about the principal axis of inter-

mediate moment of inertia. Here the motion after perturbation is

characterized by a relatively violent departure of the spin axis from

its initial state, more appropriately described as tumbling, and

unstable by any definition. The influence of a flexible (and

dissipative) appendage on a spinning spacecraft might cause either

kind of instability, or might alternatively be manifested only as

violent and potentially destructive oscillations of a small structural

component, without significant influence on vehicle rotations. In

this dissertation only local stability characteristics are examined; in

order to explore the nature of instabilities detected here, nonlinear

simulations would appear to be necessary.

The equations of motion analyzed in the sequel are a subset

of the more general set developed in Reference (11) identified as a

hybrid-coordinate formulation; this leads to equations of motion ex-

pressed in terms of a combination of discrete coordinates, describing

10



the arbitrary rotational motions of the rigid bodies, and distributed or

modal coordinates describing the small, time varying deformations

of the flexible appendage; thus truncation of the normal mode

equations can be accomplished to the level required for any particular

application. In the text we shall on occassion truncate these

equations to a single mode to reduce the number of coordinates in

the system to a level amenable to literal stability analysis. In our

formulation we restrict the flexible appendange equation to consist

solely of a collection of particles, as opposed to a collection of

bodies (and particles) or even the more general finite element

approach. This idealization allows simplicity in both nomenclature

and formulation, thus permitting concentration on the primary pur-

pose of the text, i. e., spin-flexibility interaction. Although it should

be pointed out that even the most general finite element approach

results in equations of motion having a similar form, see

Reference (12). The equations of motion analyzed in the sequel are

derived in Appendix I.

11
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CHAPTER 2

SIMPLE PARTICLE MODELS

As the purpose of this dissertation is the investigation of

spinning flexible spacecraft, in particular their stability behavior,

it is desirable at the outset to examine the effects of spin-flexibility

interaction. As such, much of the material in this chapter will be

directed toward an elementary model.... elementary enough to pro-

vide both visibility and insight, yet with surprising sophistication

allowing meaningful conclusions. The point to be made is simply

that the influence of spin on flexible spacecraft may have a significant

effect and that generalizations from what has been developed in the

literature may be misleading. Indeed, for the simple model to be

considered it will be shown that, depending upon the configuration

(orientation of the flexible appendage with respect to the rigid core),

spin effects may be either stabilizing or destabilizing. Much of the

material presented in this chapter was developed jointly by the author

and Mr. V. Baddeley and documented in a North American Rockwell
*

internal report.

EFFECTS OF SPIN

In Reference (11) it is shown that for non-spinning spacecraft,

the linearized homogeneous matrix equation descriptive of node

deformations in a vector basis fixed in the undeformed flexible

appendage, may be written as

A
M q +Kq = 0 (1)

A
where M is the system mass matrix and K is the (non-spinning)

stiffness matrix. The effect of spin will be to alter this equation in

three ways:

*
F. J. Barbera and V. Baddeley, "Effects of Solar Panel Flexibility,"
No. American Rockwell IL No. 192-405-70-058, Sept. 1970.
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a) Preload Effect

b) Centripetal Acceleration

c) Coriolis Coupling

As will be shown the latter two effects will fall out naturally as

a consequence of the dynamic formulation, and their effects on the

natural frequencies of the system are predictable in a general

fashion without regard to configuration. Conversely, the preload

effect is configuration dependent, requiring a re-examination of

structural properties.... it may or may not seriously modify the

stiffness properties of the structure.

Centripetal acceleration will always tend to decrease the

natural frequencies of the structure, i. e., a "softening" effect. On

the other hand Coriolis coupling will actually increase some of the

natural frequencies and simultaneously decrease others, independent

of the configuration design, and as cited earlier, preload also may

either soften or stiffen the structure; however, preload is configur-

ation dependent.

The net effect of spin then is a three-fold modification of

Equation (1) to the following:

Mq+G ++Kq = 0 (2)

where the combination of preload and centripetal acceleration has
A

altered the non-spinning stiffness matrix K to the spinning stiffness

matrix K, and coriolis coupling has introduced the skew symmetric

matrix G. Although herein the effect of the addition of G is con-

sidered only superficially its contribution should not be taken lightly.

In fact modal analysis techniques, required to permit the engineering

necessity of coordinate truncation, are significantly altered by the

presence of G; these considerations are examined in depth in

References (11) and (12).
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In order to permit full appreciation of the consequences of

these effects a simple model will be introduced and analyzed in detail.

The simple model, shown in Figure (1), is described by a rigid core

to which two particles are attached through springs. The principal

axes (x y, 9z) of the system in its nominal state remain coincident

with the principal axes of the core, as the particles, each of mass

m, are symmetrically located a distance IY along the y axis under
y

steady spin. The particles are permitted to displace radially along

the y axis, as well as rotationally through a two degree of freedom
A Apivot at the attachment point allowing deformations in the x and 

directions as well. (For easier visualization each particle is con-

strained to lie within a massless tube denoted by the dashed lines.)

The non-spinning stiffness elements of the model are denoted by
A A
k, k , and z with corresponding nonspinning natural frequencies

A
and A. The spin, directed along the positive z axis, is

x y z
denoted by Q.

In the present discussion the simple particle model will be

allowed significant configuration variations. In particular, to fully

demonstrate the consequence of the effects discussed above, three

examples will be considered, as shown in Figure 1A. In each case

T denotes the steady spin particle location. To examine these
y

effects we shall introduce deformations from steady spin for each

of the three examples. Consider the structure of Example 1 both
A

prior to and after a deformation u in the z direction (see Figure

lB).

15
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Figure 1. Simple Particle Model
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EXAMPLE 1 

A/

EXAMPLE 2
As~~~ I

A
x

EXAMPLE 3

Z

4A-4- r y
m-
m

. ,

z A
m

,I-ry 1-

fQ;

-
A

^ / I-rdI
x

Figure 1A. Alternative Configurations
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A A
z UNDEFORMED SPINNING z DEFORMED SPINNING

T 2 STATE STATE

k¥ ~~~~~~~~~~~~~~~~Ft ~UA
ky Ft--* U

N1^A_ A FzL o L F. ; --
I ro -- I

Figure lB. Example I

As T is representative of the particle location under steady spin, it
Y

is comprised of a non-spinning contribution r' dictated by the con-
0

figuration, and a (stretch) contribution A induced by spin. Following
A

Newton's Law the force on the particle under steady spin -k A must

be identical to the product of mass and acceleration -m2Q (r + A),

permitting the evaluation of A as

m Q2

^ /\ ~~2
k -m Q

y -rn~~~~~~~~~2

Moreover the tension in the span F is precisely mQ 2(r + A).

Clearly for a finite distortion due to spin the inequality t - mQ >2 0

must be satisfied.

When the particle is displaced an amount uz, the spring force
A A

-k u in the z direction is augmented by a force F in the negative
z z ~~~~~~~~~~~~z

A
z direction, as given by

u
z 2F $ F sina - F - -mQ2 u

z t t r z
y
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Similar reasoning shows that a u deformation results in a force in
X

AA 2the x direction given by u -mQ u .
x Xx

The total force on the particle is then

lxmQ 20 0 \/x / 
Y A 9( x

|F A 2} uk -kA i2}

0 k +mQ u 
z z~

Clearly for particles configured as in Example I the effect of preload
A Ais to stiffen the structure in the x and z directions. A practical

example is offered by a helicopter blade which essentially is free of

stiffness in the direction of spin yet when rotating is observed to

vibrate at the spin frequency (i. e., the square root of the augmented

stiffness mQ2 divided by the mass).

In the above example it is shown how preload augments the

stiffness properties; however, not always are the natural frequencies

increased when the structure spins. To demonstrate this consider

Example III both prior to and after a u deformation.
Z

A A
z UNDEFORMED SPINNING z DEFORMED SPINNING

STATE E2 STATE

FtA

_ K
kFm

I--oi1 Em

Figure 1C. Example III
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As in Example I the spin distortion A is prescribed by

mr~2m r Q 2
o

A- -M 
y

-2
and the force in the span F remains m F o .Again the influence of

t 2 y
spin introduces the force mQ u equivalent in magnitude to that

Z
A

observed in Example I but now however directed in the positive z
A

direction. When combined with the unloaded stiffness k the total
A 2

stiffness impeding u deformations is then k -mQ . A similar

effect is observed when ux deformations are introduced, permitting

the total force on the particle to be written as

/ mQ 0 0 \

Fox 2 Ay
k -Y A 2 U y 

I 0 0 k -mQ/u °
~~z

In contrast to Example I, the effect of spin preload in Example III is

to decrease the stiffness properties (and hence the natural frequen-
A A

cies) in directions x and z.

Clearly the cantilevered particle of Example I and the anti-

cantilevered particle of Example III exhibit grossly different stiffness

properties, demonstrating the configuration-dependent effect of pre-

load. As might be expected Example II exhibits a preload effect

intermediate from Examples I and III, i. e., its stiffness matrix is

unaltered by spin, to wit

A UX
F ii = k -

0 k 

20



For Example I it has been shown that stiffness elements in the

presence of spin were increased by m12; in Example II the stiffness

elements were unaltered; and in Example III stiffness elements were
2

decreased by mQ . One may conclude that the effect of preload is

highly configuration dependent.

The above observations allow us to speak of an unloaded stiff-

ness matrix defined by thenon-spinning stiffness properties, and a

loaded stiffness matrix accounting for preload, which in this appli-

cation is induced by spin. Accompanying these definitions one may

also speak of loaded and unloaded natural frequencies, dictated by the

frequencies observed with and without spin, respectively. As the
A A A

unloaded stiffness matrix elements are identified as k, k, and k
x y z

we shall similarly identify the loaded stiffness matrix elements as

k , k , and k . The natural frequencies will be defined similarly,
x YA z A

i.e., a, a, and a correspond to unloaded frequencies whereas
x y z

a , a , and a correspond to their loaded counterparts. Table 1
x y z

summarizes the effects of preload on the three particle model

examples. The matrices in the first column of this Table, when

multiplied by the column matrix of deformations ux , u , u from thex y z
steady state, describe the actual contact forces applied to the

particle; changes in the effective stiffness matrix due explicitly to

accelerations (rather than forces) have yet to be considered.

In addition to preload the stiffness elements are further altered

by centripetal acceleration terms induced by spin. These terms,

independent of configuration, are introduced about each of the two

axes orthogonal to spin simply as a consequence of the dynamic

formulation. Centripetal acceleration terms which are proportional

to deformations act to add negatively to elements of the stiffness

matrix. Hence the effect "softens" the stiffness elements, resulting

in a decrease in system natural frequencies. Centripetal acceleration

21
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terms arise from expressions of the form (wx X x£). In matrix

notation centripetal acceleration is expressed as Q2 Q p. Here p is

a three by one column matrix representing the generic position
A A Avector in the body fixed vector basis (x, y, z). In general the tilde

operator prescribed over the column matrix representation of any

vector c is defined as

/ O -c
in~~~~ y

c - c 0 _cy

-c c O0
Y x

In this text however the spin will always be directed along the z axis

(i. e., 2 = 2z) so that Q2 is simply given by

0O -Q O\

O O 0
/

fQ = 0 0

0 0 0

These definitions permit the centripetal acceleration when pre-

multiplied by the mass matrix M to be written as shown below for

the simple models under consideration.

/Q 2 0 0\0 

M£2£2p = Tm? VKy y
0 0 0 u 

The modified stiffness matrices for the three examples, obtained by

combining the effects of both preload and centripetal acceleration,

are summarized in Table 2. The corresponding natural frequencies
A A Aare also given, where ax , a y,a Az are representative of non-spinning

natural frequencies about x, 3 , and £, respectively.

Table 2 clearly shows how the combination of preload and

centripetal acceleration has altered the stiffness matrices and hence

the natural frequencies of the simple examples. In particular

23
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observe the influence spin has on the natural frequencies at Example

I: one frequency was unaltered, one was decreased, and one was

increased.

We have yet to discuss the effect of Coriolis coupling which,

unlike preload and centripetal acceleration, has no influence on the

stiffness properties.... yet greatly influences the system natural

frequencies. Its effect is to introduce the skew symmetric matrix

G and hence couple the equations orthogonal to the spin axis through

terms proportional to deformation derivatives. For the simple

model of Figure (1), restricted to a single particle, as shown below,

the homogeneous particle equations orthogonal to spin are given by:
AZ

Vt2 mUx -2mMy + (kx - m2)Ux= 0

may + 2mrn x + (ky- m2 2 )Uy = 0

m

As,#
x

where k and k are the loaded stiffness elements.
x y

Define the natural frequencies of the system,

all effects, as o , w , and w, i.e.,
xyz

Unloaded + loaded + centri t

A 2 2 A2 2 2 2
(Y a or + = ocr

x x x x x

A 2 2 A 2 2 2
or =a = oa

y y Y Y Y
A 2 2 A 2 2 2 2
a a =+ = 

z z z z z

, accounting for

petal
2 A 2

x

~Q = - Q

y
A 2 2

=a + Q
z

Hence the homogeneous equations descriptive of particle motion

orthogonal to the spin can be written as

a - 2M{ + 2 u =0
x y x

a + 2M +w u = 0
y x y y
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Dividing through by m and introducing the Laplacian operator

S, we find that the characteristic equation of the above set may be

written as

(s 2 + W2) (s 2 + ) + 4Q 2 S2 = 0 (3)
x y

In equation (3) the effect of spin other than Coriolis coupling has

been accounted for in the frequencies x and w (actually for the
x y2

A ~~~~2cantilevered model Lx = AX) so that the term involving Q is solely
x X

due to Coriolis coupling. To permit the observation of the effect of

Coriolis coupling, equation (3) is put in root locus form by dividing

through by (S + 2) + 2) and plotting the roots of the
x (S y

~2
characteristic equation as 2 is increased from zero to infinity.

Figure (2) demonstrates these results.

In Figure 2 the poles (crosses) represent the location of the
2

roots of the characteristic equation for 2 = 0, i.e., no Coriolis

coupling. Conversely the zeros are representative of the roots for

infinite spin. The vertical axis is representative of the complex

component of the roots whereas the horizontal axis represents the
*

real component. As no damping is present in the problem under

discussion the roots must always lie on the vertical axis. The poles

closest to the origin in Figure (2) represent the lower of the two

natural frequencies w or w . As Q2 is increased the roots follow
x y

the delineated arrows showing that the effect of Coriolis coupling is

to decrease the smaller of the two loaded frequencies and increase

the higher. The effect then is a separation of the two loaded

frequencies.

*
Although Coriolis coupling introduces terms proportional to
deformation derivatives the skew symmetric property of G assures
that these are not damping terms. Clearly spin itself cannot
dissipate energy.
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Figure 2. Effect of Coriolis Coupling
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Although the discussion of this chapter has been limited to elemen-

tary models, two interesting conclusions concerning the effects of

spin can be drawn:

1) The stiffness matrix is modified in such a way that

natural frequencies of deformation parallel to the

spin axis may increase or decrease depending upon

the configuration.

2) A skew symmetric matrix is introduced which

further separates the two natural frequencies

orthogonal to the spin axis.

Simple Particle Stability Analysis

The above results and supporting analysis have shown the

significance of spin on simple particle models; as yet however the

subject of stability has not been introduced. Although the subse-

quent two chapters are directed toward this subject, stability

criteria for the simple model will be developed here. Moreover,

with proper interpretation, it will be shown how the developed

stability criteria for the simple model can be used to duplicate

results obtained in the literature. In particular the works of

Flatley, Vigneron, Rakowski and Renard, and Meirovitch and

Calico will be discussed. (References 5-9. )

From equation (I-8) of Appendix I the equations descriptive of

the wobble motion for the simple particle model of Figure (1) are

given as

AwX - (B -C) Qwy + mrFy ( + Q P 
x y y

Bfv - (C- A) Qw = 0
y x

21r (& -x fw ) + 7 + 2 ~Cuz + a2 A= 0
y x y z z
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A A
where A, B, anc C are the total system inertias about x, y, and z,

A
respectively, p is the difference between the two z axis deformations

of the particles (asymmetrical mode), and w, w , and w are
xyz

angular velocity variational coordinates from the nominal spin.

With S representative of the Laplacian operator the characteristic

equation can be expressed as

AS -(B- C) Q m r (S2+ Q2)

- (C - A)Q BS = 0

2 ] S 2F S S2+ 2CzS + a
2

y y z z

For the simple particle model under consideration the total system

irnertias can easily be written in terms of the core inertias A1 B1 C1:

A = A + 2m2
y

B B'

C =C' + 2m
= 2

y
2 2

Defining terms a , and K as

2 2 (C' - A)
a= 

B'

2 (C - B')
13=

A'

-2
2mf 2

Kt = YK' y
A'

permits us to write the characteristic equation as

S + (2a + 2a K)S3+[2132+2+K (2 2 )s2

+ (24a +2 K2) S+[2a2 2 +K2 2 (a2 2)]
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which is of the form

S4 +p 3 S 3 p2 S + p 1S+ p = 0

Using Routh-Hurwitz criteria the conditions both necessary and
*

sufficient for asymptotic stability can be found from any one of a

number of references. One form of these conditions, as delineated

in Reference (13), is prescribed as

p3 > 0

Pi> 0

2 2
P P2 P3 - P - po P3 > 0

po > 0

The inequality p3 > 0 simply dictates the uninteresting condition that

the damping be positive, i. e.,

p 3 > 0

2>u (1 + K') > 0

2mF)
~ 2 Kz (1+ Y

A'

A2{a A > 0z A'1

= r > 0

The second condition yields the familiar rigid body stability

criteria, to wit

*
Necessary and sufficient for that portion of the system descriptive
of the wobble motions. In terms of the complete system these
conditions can only be classified as necessary.
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p1 > 0

2raaz 2 ( 2+ K' ) > 02

=>_2r__ 2 (C IA ) (C' - B') + 2mEIy >
z B' LA' A'

2rCa 2 (C- A) (C- B) >
z B' A '

(CC- A) (C- B) > 0

Or simply that the spin axis must either be an axis of major or

minor moment of inertia.

The third condition, the most difficult to show, is automatically

satisfied through constraints of inertia properties if C is the

maximum moment of inertia, and never satisfied if C is the minimum.

2 2
P1 P2 P3 P1 - Po P3 >0

(2a ~2p2 2aK~) [a202+2 2 2 )a (2ai a;+ 2Ka K'a2 ) [a a +cr + K' (I2 - 2)] (2za + 2ro K')

> (2Caza22 + 2aza2 ) 2 + [a2 a 2 +2 2(a - )] (2a+ 2

r22 /2 \12 (2 22 + 2 K' 2)2 

z z[: z ( z j ~~~(2'az + 2~azK')

[2a2o 2 +K'a 2(o2Q2 2)] (2az +2 ,u K')

<(2r 2Q2±+ 2~2 K' 2)

[222,/2 Al (~~~.~2 2 2 (lK a2I32 K( 2 ~2)]
2 L2+ f++K 2> (l +K'a) (1 + K) K' ( z

la: +z+K~ _Q2)]> 2( ) +~(I2 +K')

202\ (l +K') a2 J3 ( + K')K '(r- Q)
[21 2 2 (2 2)] : ) z 2

=a a-+K' .z_ 02)]> (1 + KI) +1
2 z3 K

(2+ K')

31



2- K' Q2)+ a2 (1 + K) > ILI (i2+KKj +

(Q2+ K')
+ K'(i+K')

1

-
K'2i+'
I (P2 +K')

(2,2 K 2) 2

( 2 2 K > S

=> (;2 )[. 2 + K_)

-(1 + K')

[B. (I +K Ktl

=:. K' (1 + K') >

2 A C'-B' i
Butf 0 ~ ISA'

'(2+K') - K' Q
2

( 1 +K')
(1+ K') (,+K)

2/i2 -(3 ~+K K) - K' 22 (1 + KI)
(+ \ 1 K +) K) O2+ K')~2

> K' - K'
(1 + K')

(932 + K')

K' (2 _K-)

always less than 1

Hence 2 _ 1 < 0

< (12 + K')

(,_) (12 + K')

A' + 2mF 
2

(C'- A ') <
B'-2B' C' -B'+ 2m2

y

C-A A=> <
B C-B

which is always true for C > B and never true for C < B. Hence,

the combination of conditions two and three dictates that the spin

axis be the axis of maximum moment of inertia, i. e.,
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C > AC>A

C>B

Condition four leads to a stability criterion which bounds the

loaded natural frequency in terms of the spin frequency and the

system inertia properties:

po> 0

0~~~
4a2a232 +Kla 2 (ar2 _2)]> 0

so 2

2[2 ' 2 (2 2)] > 0
Xa [a2 , + K' (a2 Q2)

-2
____2 (C'-A) 2 (C' - B') 2 2)] >

A' + 0~~~(Q)

However from condition three we observe that C > A which implies

C' > A' so that the above leads to:

a2 2m2
2m~2

> 7
2mF 2 + C' - B'

y

In summary, for the system characterized as a simple particle model,

the conditions both necessary and sufficient for wobble motion

asymptotic stability are:

> 0 (Positive Damping)

C > A and C > B (Spin about axis of maximum moment

of inertia)

2 - -22mT
_z) > y (4a)

( 2mT + (C' - B')

-r2m
with C = 2mn1

2
+C' and B = B' the last of these conditions takes the

Y
form
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2 2mE2

(>) C-B (4b)

The significance of loaded natural frequency with respect to

stability is now readily apparent from inequalities (4a) and (4b). It

is clear that when the natural frequencies are augmented positively

so that the unloaded natural frequencies are increased due to spin,

the margin of stability is enhanced. Moreover, if the flexible

structure is radially mounted as in Example I, and if the core

inertia about the spin axis exceeds its transverse inertias, then

stability is assured. To observe this, substitute in equation (4a)
2 2 A2 2

the results for u shown in Table 2, i.e., a = a + o . The
z z z

result yields the following

A 2 -
(A)2 2rnI'

+> 2mrn + (C' -B')
y

As the right hand side of the above expression is always less than

unity for C' > B' then this condition is always statisfied ..... indepen-

dent of the amount of flexibility or the magnitude of spin (Meirovitch

and Calico have observed this phenomena in connection with a

structure idealized as a rigid core having attached to it flexible rods.

Quoting from Reference (9): "..... any stable satellite possessing

axial rods alone will remain stable with the addition of radial rods. ")

Conversely, if the flexible structure is mounted anti-

cantilevered as in Example III) or possibly orthogonally mounted as

in Example II, then stability may be seriously degraded by spin even

if C' > B'. To emphasize the effect of preload stability criteria for

the three examples are re-examined for the special case where the
Acore possesses inertial symmetry about the x axis so that C' = B'.

The stability criteria for equation (4) then reduces to

34
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( 2

The resulting stability criteria for each of the three examples are

summarized in Table 3. Clearly, the structure configuration is as

important as the natural frequencies themselves (if not more so).

Well aware of the pitfalls of generalizations we can, however,

apply the above limited analysis to a practical application, namely,

Skylab B shown in Figure 3. The purpose is not to examine in

detail the stability of such a complex spacecraft, but rather to make

educated guesses based solely upon analysis of the simple particle

model. Clearly much more elaborate analytical techniques, including

simulation studies, are required to gain the confidence necessary

prior to flight.

SOLAR CELL ARRAYS

OWS

A
--- y

L- DOCKED VEHICLE

INERTIAL BALANCE MASS

Figure 3. Skylab B Representation
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As shown, Skylab B will undergo a steady spin about the
A

indicated z axis as an experiment to provide artificial gravity

through centripetal acceleration. The structure contains flexible

solor panels distributed about the (assumedly rigid) core in a

fashion which exhibits similarity to each of the simple particle

model examples considered in this chapter. In particular, the two

solar panels attached to the Orbital Workshop (OWS) are configured

much like Example II; whereas of the four panels attached to the
AApollo Telescope Mount (ATM) the two directed in the negative y

direction exhibit a structure similar to that of Example I and the

two directed in the positive y direction can be associated with

Example III. We would require then that the lowest unloaded natural

frequency of each of the two OWS mounted panels be at least as high

as the spin frequency. Also, we would require that the two panels

mounted on the ATM directed in the positive y direction exhibit

an unloaded lowest natural frequency significantly higher than the

spin (as much as two times). On the other hand, we would expect

the two remaining ATM mounted panels to be almost incidental to

the question of stability, and in fact, they may safely exhibit unloaded

natural frequencies lower than the spin frequency.

Although the cited associations are at most remote, neverthe-

less the similarities are persuasive enough to allow engineering

judgments, as well as insight. Perhaps a more direct association is

provided by the same spacecraft. In the shown configuration the

principal axis of maximum moment of inertia is not colinear with

the desired direction of spin (normal to the solar panels). To

overcome this deficiency cables with large tip masses were

suggested as a means of effecting a more satisfying mass distri-

bution. We can now apply our newly gained knowledge to analyze
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this proposal. Recall that our simple particle model stability

criteria can be written as

o 2 2m 2

7, > ~y
( 7) ~-2

2mr
2
+(C'-B')

y

where C' and B y are representative of inertias of the rigid core
Aabout the z and y axis, respectively. The mass distribution of

Skylab B is such that C' < B , thus assuring that the quantity on the

right hand side of the above expression is greater than unity. In

terms of the unloaded natural frequency the stability criteria for

this example can then be written as

A

2

where N is some number greater than 1. For cables a is identically
Z

zero clearly violating the required stability conditions. Thus we

conclude unequivocally that cables would not suffice, requiring

perhaps radial booms having stiffness properties more amenable to

the mass distribution. Then, too, we must re-analyze the problem

to assure sufficient stability margin.

Comparison With Previous Studies

In this chapter we have tried to provide some insight into the

effects of spin with heavy concentration on a simple particle model.

Stability criteria for that elementary model were developed showing

the stability dependence of spin, structural frequencies, and mass

properties. Some of these ideas were then applied to a very compli-

cated practical example to provide some understanding of its stability

requirements. Throughout, the dependence of configuration on

structural properties and, hence, stability was emphasized. The
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practical example considered, Skylab B, reflected this dependency

as it will be mounted with flexible appendages having both favorable

and unfavorable characteristics. Fortunately, most spinning

flexible spacecraft are not as complicated as Skylab B. Indeed a

large class of spacecraft exhibit solely favorable flexible charac-

teristics having booms radially mounted outward from a rigid core.

It is in fact, this class of spacecraft which has received most of the

attention in the literature. This chapter concludes with a comparison

of previous work and that of the author using the results of the simple

particle model (Example 1), which is not too unlike a boom config-

uration. Stability criteria for a spacecraft containing a more

general flexible appendage are developed in the succeeding chapter.

Since the literature is directed toward spacecraft having

flexible radial booms, it is required that the simple particle model

material be reinterpreted accordingly. We shall start with the works

of Rakowski and Renard, Reference 7. They presented a series of

curves relating normalized inertia properties (Rr vs. RK ) for

different values of a parameter termed X, which is a measure of

the ratio of centrifugal to elastic "forces", i. e., the amount of spin.

(The superscript R has been added to identify these parameters as

those defined by Rakowski and Renard.)

The development of the next chapter requires some restrictions
and as such is not entirely general. However, radially mounted
booms are a clear subset of that development.
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3
Rr = p

'Ihz

PR hz
p 'hp

A= El

Here p is the mass per unit length of each rod, wz is the spin

frequency, Ihz is the core inertia about the spin axis, and 'h is

the core transverse inertia. (The core was assumed symmetrical

about the spin axis, ) Figure 4 shows their results.

In terms of the variables used in this paper the above defined

parameters become:

R ~~3Rr = p
Cs

RK = C'
p BI

R ~2 ,402
___ pA4f~2Rig = = a
X I p4 EIEl/pA 4

The inertia of a uniformly distributed beam about the core defined

as IB is

1 m2 = 1 3
IB=3 mA =p

which allows us to writeR r as

*
This figure was not taken from the cited reference; however by
permission of Dr. Rakowski it was traced from his dissertation,
which provided the foundation for that reference.
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R 3 IB

C'

In the simple particle model the inertia of each particle about the
-2 2

core is m F. If we identify IB with m Fthen the simple particle
y R Y

model analogy to r is:

3mr-2
Rr 3rFY

Cl

In Appendix II the loaded natural frequency of a massless beam with

a point mass is developed and found to be:

2 A2 2a =r + 1.2f2

At first glance a massless beam with a point mass may appear

grossly different from that of a uniformly distributed beam. If one

however, used the latter, then as cited in Reference 6, the coefficient
2of [ would be 1.193 instead of 1.2. AS a matter of interest let us

digress slightly and compare the approximate loaded natural fre-

quencies for a particle mass, a uniform beam, and a massless

beam with a point mass.

Table 4

COMPARISON OF LOADED NATURAL FREQUENCIES
FOR BOOMS AND PARTICLE MODELS

Model Loaded Frequency

2 ^2 ~2Particle mass a = a2 +2

2 ^2 ~2Uniform beam a2 = cr2 + 1. 193 2

2 ^2 22Massless beam with a = a + 1 2 

point mass
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One observes that although the models are significantly different the

loaded frequencies are not.

Using the loaded frequency for a massless beam with a point

mass, and substituting the expression for the unloaded lowest
A2 ~2 4frequency for a uniform beam, recognized as 2 = (3. 515) EI/pA4 ,

z
one finds

2 El ~22 = 12.4 EI +1.2Q
z pA4

= 12.4 + 1.2Q

2
which after dividing through by Q2 can be written as

z) = 12 +1.2

For the simple particle model the stability criterion has been shown

to be
2

a 2 2mr
(z\ >

2mP2 +C' - B'
Yy

which in terms of the above definitions becomes:

2 Rr

12.4 +1.2>
R.2 2 Rr + 1 1

x3 RK
P

The above expression is shown as dots on the curves of Figure 4.

Clearly, the stability boundaries compare well. The results on

Figure 4 were generated through computer simulation by actually

solving the complete equations of motion in all their nonlinear

splendor. By contrast, our data points are the results of closed
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Figure 4. Correspondence with Results of Rakowski and Renard
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form stability criteria developed for a simple particle model. In

light of this the closeness of the comparison on Figure 4 is truly

remarkable (and quite surprising). What is termed by Rakowski

and Renard, on Figure 4, as the "Quasi Rigid Body' case (R = 0),

is simply the major moment of inertia rule dictated by energy sink

methods. In terms of the above inequality this condition reduces to

2R ~~12 Rr +1- > 0
3 K

P

The approach taken by Vigneron, Reference 6, was to linearize

the wobble equations of motion and, with the aid of a digital computer,

apply Routh-Hurwitz stability criteria. His results are given in

the form of plots in inertia space. He observed that the stability

boundary (his expression (21)) when re-interpreted into nomenclature

used herein, is prescribed by

A2
(CB)~~((C-B) ( z + 1.193 > 1 - A

where, as cited earlier, the constant 1. 193 results from approxi-

mating the loaded frequency of a uniformly distributed beam. The

above expression can be re-written as

2az A- Al(Th > A-A',>C-B

which is precisely the stability criteria generated herein for the

simple particle model (recall A- Al = 2 m I ).
y

Meirovitch and Calico, Reference 9, also developed stability

criteria for a spacecraft characterized by a rigid core having

attached to it flexible booms. However, unlike all the other

presentations, they accounted for booms extended along the spin
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axis as well as normal to the spin. Their results do, however,

separate, allowing stability criteria (their expression (43b)) for the

radial rods to be given by

2
z) > (Inertia Of The Rods)

() > (C -A)

Once again the result is analogous to the criterion generated from

analysis of the simple particle model.

Our results are now compared with the work of Flatley,

Reference 5. He too examined the radial rod problem (although his

efforts preceded the others) and presented results in the form of

both curves and tables. Flatley plotted a normalized core inertia

difference (B' - C' )/pp vs a term k _- p 42 /2EI which is a

measure of centrifugal to elastic forces. (Note the latter term is

identical to Rk/2.) With p- recognized as 3IB and IB identified
-23as m we can write (B' - C')/p3 as(B' -C)/3mf 2 . Thefirst
y A y 4 1/2

unloaded natural frequency of a uniform beam az = 3. 52 (EI/p 4 )
Z

allows

(Z2 6. 2 +1.2

where the coefficient 1.2 results from assuming that the loaded

natural frequency is identical to that of a massless cantilevered

beam with a point mass. If for the moment we assume that coeffi-

cient to be a variable identified as e then the above expression

becomes

(az) = 6. 2

Zk +

The simple particle model stability criteria developed earlier can

be written as
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(z )2
C' - BI

1+ -
2mf

y

1 3 (C' - B')
2 p3

P2

Combining the above two expressions yields

( 6- 2+

BI - C' 2 F
g3 3 (6 2+ 

k

the right hand side of which is delineated in Table 5 as a function of

Fk for ~ = 1.2 and = 1. 193, along with the results of Flatley.

Table 5

COMPARISON WITH THE WORK OF FLATLEY

46

2 6- 2 +

Fk k6.2+FF~ ~ ~~,- + 6 
k

B ,4Q2 .Flatley' s
( 2E1 ) E 1.2 1. 193 Results

0 .6667 .6667 .6667

. 1 .651 6561 561 .6564

1 .5766 .5765 .5787

10 .3004 .2990 .3023

100 .1384 .1355 .0997

oo .1111 .1079 .0000
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The results are essentially identical for low spin to stiffness
F k Fratios (i. e., k < 10). However, for high values of k a substantial

difference arises. In particular, for Fk = 0o our results yield a value

of approximately . 11 whereas Flatley showed it to be identically zero.

The discrepancy arises solely in approximating the loaded natural

frequency by

2 A 2
(a) ( ~~Z)

as compared to the true value for a massless beam with a tip mass

as shown in Appendix II to be:

2

( z ) = tah 0l Y

1-n (j1-3 -g

Z

If the true value is used then in the limit as -- approaches oo we
U ~~~~~Z

find that - approaches unity, i. e.,
0~~~

Limnit = 1

z

so that in the limit the true value of ~ is 1 (as opposed to 1. 2)

resulting in

(6.2 +

2 Fk ) 
3 (6.2 + ) l

F k kF*

~~kas it should be. oo

as it should be.
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In the above we have tried to show how the analysis of a

simple particle model can be used to duplicate the results obtained

in the literature on the subject of spinning flexible spacecraft. The

purpose is not in any way to demean the cited references but rather

to verify our results. Also no attempt is made to expound on all

the details discussed in these references, for each substantially

enhanced the general knowledge of spinning flexible spacecraft.

However, one glaring fact remains: All the cited references limited

their analysis to flexible appendages idealized as booms, except for

the very recent work of Willem.s. Admittedly, this idealization

encompasses a large class of spacecraft; however, the question of

stability of spacecraft having attached a general flexible appendage

is unanswered. A step in that direction is provided by the analysis

of the remaining two chapters.
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CHAPTER 3

THE HAMILTONIAN AS A LIAPUNOV FUNCTION

In this chapter we shall endeavor to establish stability criteria

for a spacecraft characterized as a rigid body having attached a

flexible appendage idealized as a collection of spring-connected

particles. We shall at the outset permit the flexible appendage to

be configured with respect to the rigid body in a general fashion.

As we proceed the structure will be somewhat specialized to allow

formal closed form stability criteria without the aid of computer

simulation. We shall invoke the well known stability procedures

offered by Liapunov' s direct (second) method. Among the many

theorems on stability and instability of the class developed by

Liapunov two have direct relevance to the development here.

Described in detail by Pringle, Reference (14), the theorems of

interest are paraphrased below.

Theorem 1: The null solution X(t) = 0 of the differential equation

X = F(X) is asymptotically stable if there exists a function

L(X) in a region around the origin both positive definite and

strictly decreasing for all solutions in that region except for

X -0.

Theorem 2: The null solution X(t) = 0 of the differential equation

X = F(X) is unstable if there exists a function L(X) in a region

around the origin both negative definite (or sign variable) and

strictly decreasing for all solutions in that region except for

X _ 0.

Although the implementation of LiapunovI s direct method is

impeded by the lack of a general formal procedure for the generation

of a testing function, the Hamiltonian serves this purpose for a wide

class of dynamical systems. Specifically, if the total energy of the
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system is free of explicit time dependence then for completely damped

systems the Hamiltonian,* given the symbol H, is a suitable testing

function for asymptotic stability and instability. For our purpose

the concept "complete damping" requires that energy be dissipated

for any possible motion other than the nominal motion in the neigh-

borhood of the nominal motion in the coordinate space adopted.

However, the damping of a freely spinning body with internal energy

dissipation is not complete in terms of inertial attitude angles which

are zero prior to perturbation, since after perturbation the vehicle

cannot return to its original state. Thus, for such systems the

Hamiltonian is not strictly decreasing in the neighborhood of the

null solution, and therefore asymptotic stability cannot be proclaimed

as a consequence of the positive definiteness of H. In 1969 R. Pringle,

Reference (14), provided a method to circumvent this problem.

The method is to constrain the attitude angles through the angular

momentum integral in such a fashion that they represent deviations
A

from an inertial direction, n3, which is colinear with the instantan-

eous angular momentum vector h after perturbation from its

nominal inertial orientation. The resulting attitude angles (defined

as 01 and 02 in the sequel) will in the case of a stable vehicle

ultimately reduce to zero after initial perturbation, thus assuring

complete damping and asymptotic stability.

The remaining portion of this chapter is devoted to the

development of the Hamiltonian for a rigid body having attached a

general flexible appendage (idealized as a collection of point masses),

n aL 
The term Hamiltonian is here applied to the function H- = z. - L,

where L is the Lagrangian and qi(i=l,..., n) is a generalized coor-

dinate of the system. This usage is not universal.

50



and then the determination of stability criteria from the results.

The procedure is compounded by algebraic complexity but the

results are rewarding. Figure (5) identifies the basic nomenclature

used throughout.

The kinetic energy of the system, given the symbol T, can be

derived from the general expression

2T = a. dm

A, B

where a is an inertial generic position vector and the capital letters

A and B denote that the integration is carried out over bodies A and

B. The dot over a vector denotes time differentiation of that vector

with respect to an inertial frame. Since the system is assumed

unforced, the mass center is inertially fixed, and a can be written

as the sum c + /p where c is a position vector directed from. the

system center of mass CM to a point N fixed in B, and p is a

generic position vector directed from N; moreover, N is selected

so as to be coincident with CM when the structure is steadily spinning,

and hence, elastically distorted through forces induced by spin, but

otherwise undeformed, to wit

2T=S (c+,) (c+. )dm

A, B

=c .( + )dm. + k*(c+ )dm

A,B A,B

The first term vanishes by definition of mass center, i. e.,

( c + P) dm- 0 (5)

A,B

51



BODY A
(FLEXIBLE APPENDAGE)

BODY B
(RIGID CORE)
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allowing the kinetic energy of the system to be written as

2T =c_. _dm+$ ,° p dm (6)

A,B A,B

With use of Equation (5) the first term. of Equation (6) may be

simplified by

c .) ,o dm--= - c * dm = -b~c. cc.$ Y dm=- .$~dm -d~c.C(7)

A, B A, B

where- a dm is the total system mass; the second term

A, B
expands to provide the more useful relationship

$ b - p dm =A S * dm +S- A dm

A,B A B

A B

SP * kdm +_wx *' (wx p)dm

A B

A_- dm +w px(_x.)dm

A B

= SP *A dm + w. IBN _ w (8)

A

where w is the inertial angular velocity vector of vector basis { b}
Nfixed in B and IB is the inertia dyadic of body B about point N.-B

The combination of (6), (7) and (8) allows the system kinetic energy

to take the form.
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N C .
2T = w.I * + * pdm -Jc * c (9)

-- B
A

As written, the term in Equation (9) containing the integral

includes the complete kinetic energy of the appendage, not just

the energy contribution due to appendage deformations, i. e., a

contribution of the integral persists even when the system is

undeformed from its steady state shape. Conversely, the last term

in Equation (9) vanishes when the system is undeformed from its

steady state configuration. (Note the term "deformation" is descrip-

tive of particle perturbations from their steady state spinning

location.)

The three terms in Equation (9) can be expanded and written

in matrix notation with respect to vector basis {b} fixed in body B,

as follows:

, c* · &-=J[c + (_ x c)] * [c + (w x c)]

=J[ * c + 2 c * (L x c) + (w xc) · (L xc)]

T T - T-TT-T 2 c + W Tc cc]

where c implies time differentiation with respect to the vector

basis { b } and the tilde (~ ) operation as cited earlier is defined as

/ 0 c c\
z Y

c- c 0 -c
z o

c 0
\-y x

(These definitions are of course applicable to any vector. )
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W N T N
_ IB w = IB

N NN .1i .i 
dn = m i P P = mi (i=z 'i +r) (ui ir)

i i i
A

N i i
=m _i+wx(ui +r i )· [ui+wx(u i+ ri)

= Emilu u +2 (u + r )

i
N 1 iT i .lT i i
Zm ijI u +2uL W(u +Ir

+[(U,-i F~]T ,-, i ' i=[W~(u + ri )]

N ti.T iT -'i iT i
M.i Tfi 2 .-i u- u 2 - w

+T [riT-i + (fiT-i+~iiTfi) +,iT-i] 4j+ r u u r u u

Here ri is defined as the sum of c' . the position vector from N

to point 0 which coincides with the CM when neither spinning nor

deformed (i. e., at rest), R', the position vector from 0 to point Q

prescribed as the appendage-core interface, rt the position vector

from Q to the location of the it h particle at rest, and A the dis-

placement of the i
t h

particle due solely to forces induced by spin,

to wit
i i' i

r = c' +RI+r +

The combination of the above expansions permits Equation (9)

to be written as
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1 T(/ N m -iTixw 1 iT.i
T = - w , + ZmiT i+ 2 miu2 2i -

1 T[Z ciT-i iT-i ] 1 T[Zm NTitwi
+ 2 I L mi.ru + u r w + Emiu u w

2 L 'x2 L -i

+it(miTci) + -iLLT6 W T-T,]
Zmif l ii~ui ~ T6 -26T~ w c cE Zia ( 2 [ 

N
(For notation simplicity the symbol Z has been replaced by Z. )

i
As the appendage is restricted to be a collection of particles the

term Z mi i
rF is the inertia of the undeformed appendage about

point N. Its combination with IB precisely defines the inertia of

the system about point N when undeformed:

NA N ~ iT-'i
I0 -I B + Zmir r

A A A
defined to be diagonal since b b and b are assumed parallel to-1 -2' -3
principal axes, i. e.,

/A O O

I
N

= 0 B(A°
0 0

As the system kinetic energy consists solely of terms second

order in generalized velocities* the Hamiltonian of the system is

simply the sum of the potential and kinetic energies. With the

potential energy given the symbol V plus a constant C the system
0

Hamiltonian can be written as

Although the inertial angular velocity components are themselves

not generalized coordinates, they can be expressed as linear combi-

nations of derivatives of generalized coordinates.
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1 TN 1 z .iT.i 1 T[Z (iTi+iTi
H 2 I w+ mou +2 2mi u u +u 2m iuW

1 T [Zi-iT qAT .iT u i (F i)t
+20 2 1 2mi u r u

- T - 2TTc ] +tV +C (10)

The system. angular momentum may be derived from the

general expression

h $ (c +g) x(+A)dm

A, B

= (c+p)x(c+-)dm+$ (c+p)x[wx(c+p)]dm

A,B A,B

c X (C+ ) dm - c x P dm + x p dm

A,B A,B A,B

+ c x[xY(c + p)dm] + ,p x(wxp)dm. - (w x c) xip dm.

A,B A,B A,B

The first and fourth terms vanish by mass center definition, Equation

(5), the second and sixth term.s combine, and the fifth is recognized

as the dot product of w and the inertia dyadic of the complete sys-

tem about point N, I N , so that

N C
h=I w+_ _ _xc+ pxp dm . (11)

A

The integral is representative of motion relative to the vector basis

{ b}; as body B is assumed to be rigid the only contribution is from

body A.
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The latter two terms in Equation (11) may be written in the vector

basis {b} as

,, xc =f[ C_ + (L xC)] x C : {} c b (c C + c c W)

g s x so CIm- m, (Iri + ui )x ui = { _}Emi + u ) i

A

which allows the matrix representation of h in {b}:

=h I + Em
i

(r +u

i

) + c +c c (12)

As described earlier the procedure to follow is to constrain the

attitude angles through the angular momentum integral so that they

represent deviations from an inertial direction n3 which is colinear

with the instantaneous angular momentum vector h after pertur-

bation from its nominal inertial orientation. To proceed, define an

inertial vector basis { n} and its corresponding transformation

with respect to { b} as 0, i. e.,

n{ = 8 {b}

In particular let e be representative of a 3-1-2 attitude angle

sequence with 0 the first rotation about An3 , 0 the second rotation
3 3 1

A A
about the displaced An axis, and 0 the third rotation about b2 -1, 2 :-2
The resulting transformation matrix is then

osO2 cosO3 - cosO1 sinO3 sin0 
2

cos03/fS2 CS3 01 3 sn2 CS3 \

- sin1 sin2 sin83 +cos2sin sin 3~~~~~~~~~~~~~~sinG iGsn 

= cos02 sin3 cosO1 cosO3 sine2 sine3

+sin81 sin82 cos83 -sin1 cosO2 cosO3

+-sin02 coso 1sin 01i cosO1cos2 3~- sinG8cos0 cos cos82 
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The unit vector n3 is so defined that the angular momentum vector
^

is colinear with n3 and remains so because the system is torque

free; i.e.,

A
h -nl=0

A
h. n =h

- -3

h * _3 =h

With h written in vector basis { b} as prescribed by (12) the above

constraint equations become

) LI W + mi (ri u +"fc c +c c w) =(O+ ~~V ( (j)

which allows solutions of the angular velocity components of w in

terms of the deformation coordinates, their derivatives and the

attitude angles, i. e.,

w = +C C] 0 E-mi(i + u i -f c c

The 3-1-2 choice for the sequential rotation allows the matrix

product given by the first term in the bracket to be simply

e T / \/~sinO 2 cos0 1

\| sinmOl| h
1

h cos01 cos02/

T
permitting the approximate expression for w = (w x' w w z) to be

written as:
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h h 1I+ °h) + 1t1
+ [(h 2M ) -Zmiii u 6c] (13)

where terms in the bracket higher than second order have been

dropped since the quadratic approximation of the Hamiltonian (and

hence the Liapunov function) is an acceptable indicator of its sign

character in the neighborhood of the origin as long as all coordinates

are included.

The solution of (13) for the angular velocity components, when

substituted into Equation (10) and approximated by terms no higher

than second order, will yield a Liapunov function whose sign charac-

ter is a test of the stability of the system. under consideration. As

the algebraic complexity of the solution of (13) is compounded by the

second order terms containing c, they will initially be ignored and

accounted for later.

The inertia dyadic about point N of the complete system., IN,

consists of contributions from both the appendage and the core. The

core contribution is simply defined as IN having an inertia matrix
N =Bin the vector basis {b and consisting solely of non-varyingIB in the vector basis {b Iand consisting solely of non-varying

Nelements; whereas the appendage contribution, IA, must account

for deformations as well as elements descriptive of the undeformed

state, to wit
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IN =EM (ri+U')-(r'+_ i)E - (r+Ui) (-Il +_ )]~=A1
=I + Zm [2u ri E - (riui +ui ri)

=Al' - - - =

+ Zmi Ui uE -u iui

where E is defined as the identity dyadic with the corresponding

identity matrix E in vector basis {b}, and IAN is the undeformed=At
particle contribution, i. e.,

IA = Emi[ri' rE - rri]
=
{ b}T Z m i riT {b}

The inertia dyadic of the complete system is then

N IN -At+{_} [NmN(2rI iT -i iT 
=B +=A+{ b miE

+ {b}T m (uiTui iuiT) fb_

In vector basis { b } the inertia matrix of the complete system IN

consists as shown of terms independent of deformation variables u

as well as terms both linear and second order in these variables

N N N N N
I B +IAl+ A1 + A

2

where

IN = 2 Z m riTuiE Z m (uiriT+ riuiT)
A1

N= iT iE m i iT
IA2 miu u E -Zmtu u2

The undeformed particle contribution when summed with the core

contribution has been earlier defined as IN , prescribed to be

principal and having diagonal elements A, B, and C. The expansions

of I N and I N comibine with IN to form the system inertia matrix

A1 2 0
delineated below
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The inverse of I
N

is required to evaluate the angular velocity
i ficomponents in terms of the variables 01, 02, u , and Identifyi~ O~, and . Identify

IN as

/I11 I12 I113

I= I12 I22 I23

I13 I23 I33

having the determinant

Det I
N

= Ill I22 I33 + 2I12 I13 23

2 + 2 +I 2- (Ill I23 +I22 113 +I33 12)

Since Iij for i• j consists solely of first and second order terms,

and only second order terms and below are required, the second

term above vanishes. Also the terms in the bracket yield no terms

lower than second order. Evaluating Det I term by term yields

Det IN ABC+ABZmi (2ui ri+2uiri)+AC im(2uiri+2uri )
xx y y i x x z z

+ BC Zmi(2uy r + 2 uz rz) + AB Lmi (Ux + u)

+ AC Zm.i (ui2 + ui 2 ) + BC Imi (ui2 + uiz2 )
I~~~~~

+ A|[Zmi(2uxrI"+ 2u'Tr'i)][Zmjt(2uxr 1i+2uyT")] - [Zmi(urz+ uizr')]2 |

~~~2+ -I]Fm.( (22u i ri+2u uiril l1
l 1 yy z z/ i x x y 1 xz z y/j

+ C [m.(2uiT+2u r)][Zmi(2u1ri+2uiri)] - [Zm(ui r+uiri)] 

N'

I zz i x xLz i (x y y x/ I

In the evaluation of (I ) the quadratic approximation to the inverse

of Det I is required. If Det I is identified as
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Det I
N = a +alx +a2y2

0 1 2Y

2where x and y represent first and second order terms

respectively, then its inverse quadratic approximation is given by

1

Det I

a 1

a
0

x
a2 2

y +
a

0

al 2

(0O

Or, more specifically

Em(2uixrFi + 2uiri)- B Im.(2uiHi + 2ui)1 x x yY B X x x

1 AZmj(2uPiri+2uir) -Zm(i 2 ui2u )-1 Zm, (2u~~~~~~~~~~~~~~ ~~~~~~~~~~iy r~i + 2ui ri,1-A Zm( 2
y z z -C mi (U. 

+
uy)

- Z mi (Ux + u2 )-B UX Z

1zm/ i2 +2)
A Z Y (uz 

-BC+ mi(2ur ri)][
i

.(2u + ZZl2uixxY)] -[Zm (u U iyzy.

-C L ix y (2uIy z+2uZL, x x Y Y [mi(uxr z z+ ux)]

-F B|[Em~i(2uiry+2uizrzi)][Em(2uirxi+2uirzi@-[Emi~ur]2

1Bl[m,(2Uiy i+ 2uiIri'][Zmi2uiri+ 2uiY i [m YuI~+uiYi~2z z/L ' I xx z Y)] .(' ixy y zx

+ jAB jm 1 (2uiri
(ABC) 2 xx

+ 2uFi)i
Y Y

+ AC Em,(2 uir i + 2uir1 )~'i x · z z

i i i i) 2
N Y z z

With the adjoint of I+ identified as) ]With the adjoint of I
N

identified as

N
AdjI =

All

A12

A13

A12 13

A 1 3 AA22 A23

A23 A33
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Its elements excluding terms higher than second order are found to be

A 1=|BC +BZmI(2urx i
+ 2u i + u

i
2

+ u i 2
)

111 BC[ y B Zm'i+2u ) x y x y

+CZ m i (2 u i r i + 2 u i
i + u i 2 + ui2)+CZ x X Z Z X Z

+ [Zmi ( 2 uiri +2ui i F)] [Zmi (2ui i + 2uiry)]1x x z z \i 

[Fm (ui ri+u iri)]2
y z z y

33 |ABC+ A EM (2U ri + 2Ui ri+ Ui2 + i2)
22~~~ xx y y x y)

A + + m2ui2r + 2uiri+ u i 2 +u i 2

+ 4 mi (2u mr( + 2u ir+u )] [mi (2uv rx + 2uu rZ

1z y z z xyyy~~ i2\

+ LZmixuy y +2 zFL, z\ xxyy

[- mi(ui i ii)]
2

+B+miK 2 u I +2u I'
i

+u +u

+12 Bc Z m i (2u i ri + 2u i Ix + Ux u i 2+] i

yy zz y z)

y y z z x z z

U r +u u
A1

=

mix x y+ y xxy

+ [mi (ux ry+u i)][Em (2ur+2uri)]

y+ [Zi(xn u+ui) x x y +u y)]

xzz x y z z y
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A1 3 + LEmijuxfy +Uy x)/ LEmiri+uYzu±Y

+B miUX Z Z X X Z 

+ [ Zm 1 (2uXrX+Z Z)] X Z ZA |A m(ui ri + ui ri + u Uz )A2 3 = Ai Zm! zu zPy1

+[m(2uiPi+2u'P')] [Zmi(uiri+uir1 )]
y y z z y z z y

mir
i
Y + u i r 

i
mi i 

)rBi\] [; 'm(u + ]

With the inverse of I identified as

-1 /11 B1 B1tIN) = ~B12 B21B3

B13 B23 B33/

its elements are evaluated by

A..

i Det I 

Observation of Equation (13) yields one further simplification: As

the immediate goal is the derivation of expressions for the compo-

nents of w to terms at most second order, and the only contribution

to the bracket in (13) which post multiplies (IN) -1 having terms

independent of small quantities is (0, 0, h) , then only the elements
-1

of (IN) identified as Bi3 need be expanded to second order. The

remaining three terms need only be evaluated to first order. A

summary of these expansions is offered below.

66



i
-,N
F-4

~4N
eq

+

-4X
eq

LJ!

m---

peq

-.-aN . 4h

F-a

+ _-fr

!-Ck

-r-- N

+ h +

•.14H

--a

'-z: -aX

H|N1 eq
u

rc

- +

_h +
eq eq

_~ g

_ N x
-;N _ aH

N I

I u_

m
N

F-4 H

+

-I-

i-4 -l

v11

LJ

-x

-I

+

N

F-iN

. 4

r J

-I

+

-a

. - !

!
N-

_ V

¢4

F-I
+

_InN

+

-* N

--

pL

+

~ m4

-a
+

+
*N

F-a

-a
m

F,
r.4N

+
hN

-H -

,4

+

F-a

fi

+

_.- N

+
- N

F-

vc

-I~

imv

m

- N
_- N

+

--ax

_q X

I m

II -aM

m

F. 

_:

+

F-L.

--

-4

I VI

1 m

CQ l

-- X

-._ N

3II+
-N

,-,

eq_4 V

+

LJh

+

eq

-,Im

_r4

+

!

vcJ

#
--4

-4

m

req

ca
m

67

I

I

I

11



The evaluation of the elements of (IN)
-

, to the degree

required to obtain the quadratic approximation of the Hamiltonian,

permits the inertial angular velocity components of vector basis

{ b} (for c = 0) to be determined by expanding (13).

(/ y-h 0M r u u

( 5-140 jm~u * +|E i i rI*i)

' / it Z Y y Z)

By- + h i l | 
i x z z

-2h(02+ 022 + mi(U i 6i u -a)/

By examining the character of (IN) it is observed that only wz

has a term independent of small quantities. Further, only second

order terms need be retained in evaluating the quantities in the

Hamiltonian which appear as products of either deformations,

deformations and angular velocity components, or angular velocity

components. These observations allow w x and w to be
x yy

expanded only to first order terms, whereas second order terms

must be retained in evaluating w :
Z

w~~ h 2 _ -+ m(i i _ iu h zm,( i i + i it~ ~ ~ I. Em., A-+~ u'xlS t A A mi zy y z AC ix z z x

(14a)

Bhy 1 ii i)+ h ri+ ui r

B~s, Bz i ~'m(tru~. z ~ ~ Zm(u ~ z ,b)1 ~~~~~~~~~~~~~~~~(14b)
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| =hO .2 [m~lxur)]+ hO ~ yx~xY

=AC [Zm(U ri + u r + B[mi(u r+ ur)]

2nd~ ~ 1 cU c2 "y ~x x y~ ~ ~-~y

+h 2 [Emj(u'iu - ru' r')] [Zni(urri + ur i)]

+ C [mr U -Tr u yu u

_ h Em ('.x+.u. x)+ h [m~ (2. ~. u~J
h1[ ( i )]2 h[ z iii]

2-~ i rM iu i i

y Y 

+B-C m i (rXI z x/L/ ' ikyzx 

C2 1mi(Ux y C 3 x x y y
C

2

~~~~~ 

~ 2h (01 +-- mi )+ C ymU L~ \ Ux 2 ) (1xBC 2 [ y AC 2 1

C 2 (Y Y Zi Ix 

-h 21 ~22) 1 Zm (ui;
' i i .;)

-2C 0O +02 C mix UxU x 1c

Substitution of the set of Equations (14) into Equation (10) with

c equal to zero yields the Hamiltonian in terms of the coordinates

u, u, u* 01, and .2' Expanding (10) term by term and dropping

components higher than second order yields the desired results:
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22 22
1 hO 2 1 h 0+ 02

Ak 3 --
2 2

- LWm ri~Fu - FUi)j ~2 LzmArxuiz 'ziux)]

h- F [m(rui ri~uiri•1+~ r2Cui

AC1 h ¢iUr~ir) 2 LhY 2[iUriuir)]

2 2 2 B 2C L i1 +2i

12 i i _ i i 1 i
~_c Uyz x

2 Y 2B 2 

h2

-AC2 Zmi (uXri+ uiP1) h Lm urr+uL)

2C 3m i x y/

+ m(' 2 +A m Uxi2+ u +V+C (15) C

yz ,Io

2h2 [Z (Uix
r i

uiri)]

Prior to extracting stability criteria from (15) it is first

modified to account for mass center shifts due to particle deform -

ations. Thus we shall re -examine the developm~ent of the previous

pages noting the required modifications which permit center of

2~~~.he

mass sfx z Equation (,i is rz ye

+ ~~(i2 +m (i2 + Ai2 ).~ + V + C (5
+2 Zm o 

Prior to extracting stability criteria from (15) it is first

modified to account for mass center shifts due to particle deformn-

ations. Thus we shall re -examine the development of the previous

pagwhere c is the required msentation of c in vector basis {}, and of

mass expressed solely as a linear sum of the deformation vectors

H prior to the substitution for Li in terms of attitude angles. The

mass center shift contribution is

2~~ 2 L + o c c 0

where c is the representation of c in vector basis { b}, and c

is expressed solely as a linear sum of the deformation vectors
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i 
U, i.e.,

1 =jc = T WEM

--- Z uJ

Hence

1 ji
i u- -. ;,m.

~yt( Jj

Neglecting quantities higher than second order, then one finds

through term by term expansion the following:

.T. -2 LY~ rnjx22 .+ 2+ .T. I [( Mj) Aij) + ( M mJiJz)1
c /f c 2 Zmjf X+ (m Y 

-2c c w ~- [(mjiX)(mjuJ)- (m'u )( Zm' )]

z~ ~ ~i (mj +i,.- , +C/x J /

2 4)W22
w c cw W W2 LXmju x + mju~)

Thus when mass center shifts are accounted for equation (10)

expands to:

1 TiN 1 iT.i
H - L I OW +2 miu u

T[Zmi(-iT-i -iT i 1 T[ ~ iTffi] 
+ 2 0 r u U r )] W +2 W UuU

- ~m~ T~ i~~+V +COmt fit (i + ui

+m 2

J I [(Z mj
f l

) +

-J7 I(E mj i Y) (E I 

2 . 2

(Zm. y)2 + (Zm j) IJZ MjJj 

22 W 2 .2 . 2

2 a[( j x Zm uD

71
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Due to the addition of the terms after V, all of which results from

CM shifts, one has to modify the angular velocity components as

well. Starting with Equation (13) we first have to calculate

(I +c c ) and its inverse for c• o.

0

C
wC C =s Y

-c 0 -c
z zO -CX CZ O

Cx y 
Cx0~~ -C x

2 2
C C - C
YCz y

-Cx =-f C 
x

ycy
O/c c

x,)Z X

C C
y x

2 2
-c -cz x

C C
y z

C C \
Z X

C C
ZY 

c2 c2
-C X-C
y x

(EjX) (z j Y)

. 2 . 2
(Zmj u z ) - (m .u J )

(2m Uj ) (2m UOz
(Zrnjuy) (Zm jul

which must
(N '-i '-

(I +.c c

N-1 A
(I N) =

(Emj Ujx)

(EZmj uj )

. 2
- (Emjuy)

(Zmj uj)

(Emj uJ )

N
be added to the inertia matrix I . We now identify

AN
) as I , and its corresponding inverse elements as

A A A
Bll B12 B13
A A

12 22 23 3
A A A

B13 B23 B33

N
By observation of the elements of I and the corresponding

modifications W c c it is apparent that to account for the term

.M. c c one must replace:
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i2

by Z m i u

i2

by Z M
i

u
y

1

1

2 by 1
by ZmtUz -

. 2

(EZmj uj)

2

(ZmjuJ )

. 2

(Zm u 3 )

ii i i
m u u by Z m i Ux ub y xyu 

1W ( m u ) (Z mjnuj )

Z miui ui by mUui -ji 1 mu) mju )
zmUx~zby E mtux uz - -- (E.m U~x) (zrnj u~

m.iu u by m u u -
The iy iz eiymz ,oyo im

The inverse elements follow immediately.
A A
B =B ;B1211 11' 12

(Zmjuz)

A
=B *B `:B12' 22 22

13 1
B B -A13 1 3 , WA-C

1
23 = B2 3 .BC

A 1
B33 = B33 + 2

gC 2

(E mj u) ( M juZ)

( z i) ( ; uiz )
(EMj) 2+ I (Emjui )J .aC 2 JY

Rewriting Equation (13) as

-hi

0
+ 0

h 0 +0

- £mi i i u I
i
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it is clear that all terms have been identified except the term

- ,c -c, which is simply

M.; mj ui ) ( ui)- (Zm. ui m uiJ

=(ZmjU ) (ZmjUJ) - (Ym 
j

u9)(Zm J )

\ E X) ( j y) (7m. 'ji y) (zjX)

These identifications now allow us to solve for W ,x, w and w to
x y ~~z

the order necessary to assure that terms up to second order in the

Hamiltonian are retained:

xlst xI1 s t for c = 0

y1 s t y Ist for c = 0

h (Z 2 2Jx (ZrJyf
nz 2 nd z 2n d for c = 0 (mu) + 2 ( u)

+ I~mui I.mI- lamulmuI~~~~~~~~~)- tzX
+-..C(ZmU) (Cmj) J y 4Ci )y Ji)

Now consider the terms in (16) one by one to determine the alterations

required to accommodate CM shifts. The term W w I w is altered
0

to:

1 C2h r h ;2 h 2

2 (C tc 2 (mjux) + h(Zmju )
~~~WC~g

+ M. C)(mju )(Zm j)]

h2 ( 2 + x/ .2
= h )mu h 2(ji )

+ hC , j xi m.j)

-~W-C (!,Mju M (]~ju( i 
JZmjU~x A ~C2 (ZmC u )

+ ~--- (Z'mjU~)(Zmj~J) j'C (ZjJ(Zjix

74



The remaining terms prior to V in (16) are unaltered. As the first

term after V is independent of w it also remains unaltered. The

remaining two terms are expanded to second order by substituting

h for w . Hence, the collection of terms required to account for
Z z

CM shifts which must be added to Equation (15) are:

hC2 2 u)(Emjuj) yJ C[ 'M. u~~~~~~~~~~j y / M. x/

2.4 [(Zmjuj) + (Zmj Uj) + (Emjfil) 

2.A jx y 
h [( u)mu a i)M ui)

Z .pJ Em - (Emjlaj)(Zmju )

h [(mjuj )2 + (mj i ) 2 ]

which simplifies and combines to

- 2 [( mj a ) 2 + (Emjh) 2 + (mjj ) 2

2,, C2 [(Zmj ux ) + (m.j Uy) ]

This result allows us to rewrite the Hamiltonian accommodating all

terms including mass center shifts, to wit
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h22 22h26 h'O' 2
2 1 h 2 2

H--~~~~~~ ~ ~~~~ 2---~(0 +0)
-2A 2B 2C 1 2

h2Eh20 h2O
AC Zmi(Ui r

i +
uiF )+ -C

1
Em.,(u i

r

i

+
uri)

h~~~~~2 2[2

AC ix z z x y z z y

h+ h m..\urui i )] 2 h2 [ ( u i r i + ui i )]2

2 Xz zx 2y y

2AC2 1lXZ ZX 2BC2 1 iuy Z Zy

2h 2 i i2h _ , [( j 2)h 2 r ( i u )
]

+ V 1 [3mi. F 6i ui r i )] 2

2 2~.

-21A Emi zy- (i )] 1 [m (riz- zi]

1~ . i2.i22 i2~ h2
+ 2 mi~ + yUz) + 2C

12 . 2 2 .2

[jjm. ) + (u m) ) + (ZmjUi) ] +C (17)

The potential energy term must accommodate the steady

state deflection of the particles induced by the constant spin rate

2. When expanded it consists of a term quadratic in the deformation

variables, a term linear in the deformation variables, and a constant

term. The constant term may be combined with C to form a new
0

constant K , and the linear term cancels the linear term in H
0

identified as
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h2 [Zmi((uir u+ui)]C2[ ixUx x + y yI
C2

The quadratic term in V, defined as V2 persists and can be combined

with other terms in H quadratic in the deformation variables.

To cement these ideas we shall temporarily digress and

reconsider the simple particle model discussed in Chapter 2,

re-sketched below as Figure 6.

A
Z

m
A
y

xx

Figure 6. Simple Particle Model

From Equation (17) the linear term. is shown to be:

- h 2

-mu r
C2 

The potential energy is clearly

V = 1- k (u +A)
2 y y

1 2 1 21 k u2 +k A u + - k A

The first and last terms are recognized as the aforementioned

quadratic and constant terms, respectively. The linear term
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k A u is expanded as follows: From Chapter 2 the steady state
Y Y

deflection A is shown to be

2
mr 2

A = 0

k - mO
2

y

where r = F - A 
0 y

Thus,

m(_ -A,) Q2
~= Y Ak -mF~A y~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~= A ks = M.Tr 

k - mQ2 y y
y

Hence, the linear term in V expands to

k Au mf Q u (19)
y y y y

Recognizing that to the first approximation h CQ2, it is clear

that the sum of (18) and (19) reduces to zero.

If in the general expression for the Hamiltonian, Equation (17),

we expand V, and cancel the linear terms, the results, after
h2

identifying K as - and rearranging terms, can be written as:o 20
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H 1 h2 2 (C-A) + 1 h202 (C- B)
2 2AC 2 1 BC

2 2i( i , + ui i) + h 2 (u r +uzri)

h2 2 N i i . h 2 N .

2 ( i (u
i

ii (uiF1 + 
2AC Lij i~uxz 2zB C i

miiUx+ h2i N 2y2!
EN m (u r+u' r'')]I + Ijm(uiu + ui2)

2C i 2BC 2 i 

particles~~~~. 2
2qao (2)i ZteHmilu ni) 1 f a rigibdyhain

h2 [mo dl 2 N 2 Nd) i2iiti]

Wheren V is ideoentied asythe iniasymptedoucle suati fovr t

positive definite (oriby Ux x yeg2-C j x/ + ( Zmj UJy) T-C[ ir2,MC

3N dformtio coriats Not thtti2si otatt h

qutm (2 i - o ig
2A L i y y c rs z 

ourmathmodel, N i. 2 t N iN .a2 N .2n

pos'itm(.ive defin+ite) (o byThorm 2"untabl]fo H(~ eithe negat'ive~

3N 3N
+ - Z Ek U u ~~~~~~~~~~~~(20)

Where V 
2

is identified as the indicated double summation over the

3N deformation coordinates. (Note that this is in contrast to the

other summations which are to be carried out only over the N

particles. )

Equation (20) is the Hamiltonian of a rigid body having

attached a general flexible appendage. We have not, as of yet,

specialized in any way; except, of course, within the bounds of

our math model, i. e.,. the appendage idealization as a collection

of particles. As ff in the presence of damping is negative definite

then by Theorem I the systemn is asymptotically stable for H

positive definite (or by Theorem 2 unstable for H either negative
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definite or sign variable). Since for asymptotic stability the

complete function must be positive definite then it is clear that the

following must be satisfied

1 h202 (C-A) + 1 h2 02 (C- B) > 0-he 2 +0
2 2 AC 2 1 BC

which leads to the familiar necessary stability criterion predicted

by energy sink methods for spinning bodies having an internal

energy dissipator, i. e.,

C>A and C>B

Thus by inspection of the Hamiltonian we can formally

conclude, that in the presence of damping, the spin axis must be

the axis of maximum moment of inertia. Note that for a freely

spinning rigid body [ = 0 allowing, by virtue of a stability theorem

similar to Theorem 1, Liapunov stability (as opposed to asymptotic

stability) for either major or minor axis spin (since in the latter

case we can use - H as a Liapunov function). These results are,

of course, expected; and anything short of them would be cause for

alarm. However, our endeavor is to extract additional stability

criteria (if any exist), and this requires the determination from

Equation (20) of conditions for positive definite H. Although such

conditions could be established in any given specific case by means

of numerical procedures, in order to obtain literal closed-form

stability criteria we are forced to restrict our flexible appendage

model to lie in a plane containing the CM and normal to the spin

axis (r -- 0, i=l, .. ,N), see Figure 7.z~~'''
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.,j> FLEXIBLE APPENDAGE

A
V

A RIGID COREx

Figure 7. Restricted Appendage Model

Moreoever the stiffness elements orthogonal to the spin axis are
i i

assumed infinitely large (u = u 0) so that the structure is
x y

allowed to vibrate only in the i ± direction. At first glance this

latter restriction may seem overly severe. However, this is not

true since the former restriction Fr
i
= 0 separates that portion of

z
the Hamiltonian descriptive of wobble motion from. the remaining

portion descriptive of the spinning motion. Accordingly we have

to assume also that the stiffness elements are uncoupled. Thus,
ithe restriction z = 0 separates the Hamiltonian, and hence, the
zstability conditions into two parts:stability conditions into two parts:
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H 1 h 2 0 2 (C-A) + 1 h202(C-B)
12 2 AC 2 1 BC

h2 2h0 N i h2 N ii

AC m i ur +-C jm.u rAiz x BC i I z y

+ 2 _ [N (Uz rx)]2 + 2 [- ( r 2)~~M+ M1i 1

2AC2 LZmikuzi ] 2BC2 Lii

'I m F i u i
N 2j N.] + . 2

ihe M.. u r s I

x~~ N

CL zyI z 2B i xy z

~~~~~~i M

3~ 1m

ad mi W shal in t m z t

ui i)i 2 N
T2 C

3
L~~, he re'misutrio Ui u 0 ru the tit

y y.

restrictions apply i. e.,

H = H1

h2 N2 . ) x/2

To formulate the restricted Hamiltonian in a more useful form

define the following matrices.

2aC~~ J y1i

-2 z 2,, mj m

2N 2N
+ Z' Z k mU u

2 ~ Im.x, y X, y

i iThe restriction -a = u -0 reduces the total Hamiltonian to
x y

H
1

allowing stability criteria extracted from Hi to be both necessary

and sufficient. We shall in the following assum~e that, these

restrictions apply, i.e.,

To formulate the restricted Hamiltonian in a more useful form

define the following matrices.
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1

m 
N

by N by 1

1

E A- 1

1 N by 1

I-~~~

r xX r 2

X.

ri
y

. A
y

*N
x NbyN

rF2

y

.*N
Y NbyN

where M, r and Ir are all N by N diagonal matrices, q and E
x y

are N by 1 column matrices with the elements of the latter all

unity. These definitions allow the following identifications.

Zmi(uizrx) = (MrxE)Tq

Zmi (uz ) ( qE)q

i iT
enery tae h om 

Hmion r )]2 = (mri E)n q(mr E)aqs=q rE)(mrE)q

[ (ui ri)]2 -q T(M r E) (M r E)Tq

With K defined as the structural stiffness matrix, the potential

energy takes the form I q Kq allowing the restricted

Hamiltonian to be written as:
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1 h 2 02 (C-A) + 1 h 2 B

2(Mr E)Tq + (Mr E)Tq+ qT Kq
2~C 2ACB2 1 B

h2 2 hO~~~T hOh2 T 1 h2 1 T

AC q (Mr1 E)(Mr E)q + q (M E(Mr ETq

+ q M q TAq T (Mi E)(MrT 2 T (Mr E)(Mr E)Tq
2Cy- 2-BC

(21)

Where the symmetric N by N matrix M' is defined as

2
rn m1 r m 2 lm 3 mlmN

2
lm2 2 2r3 2

M' = Xm2 X X ..2. .

2
1 N 2 N M 3MN NrolmNm~~m N r n mNrnN

.W _ - ..... MN- w

As written the scalar Equation (21) is descriptive of all modes

of vibration having a total of N + 2 coordinates (N deformation

variables and 2 attitude angles). Our quest is the development of

closed form stability criteria; thus a reduction of coordinates is

desired to reduce the complexity of the problem to a level amenable

to mathematical analysis. We seek then a transformation which

transforms the N discrete coordinates to (normal mode) coordinates

which are totally uncoupled, thus permitting coordinate truncation

with the assurance that the mathematical model is a complete

representation of the selected modes. The "hybrid-coordinate"

approach, described in detail in Reference 11, offers a practical
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means of approximating this goal for spacecraft wherein only the

homogeneous matrix equation descriptive of appendage deformations

is transformed to uncoupled modal equations. Although the equations

remain coupled through forcing terms descriptive of spacecraft

rotational coordinates, the resulting uncoupled homogeneous equa-

tions provide some justification for truncation (in an engineering

sense). This approach has received acceptance in a growing number

of aerospace corporations (e. g., Hughes, JPL, Lockheed, and

North American Rockwell) and has in fact provided the mathematical

foundation for digital simulation studies for a number of spacecraft.

In this dissertation we shall adopt this technique as an acceptable

mathematical tool. Introduce then the coordinate transformation

q = Or which transforms the N by 1 deformation column matrix q

to the N by 1 modal column matrix 1. Here 0 is the N by N matrix

of eigenvectors normally associated with matrix modal analysis,

see for example Reference 15. Moreover, let 0 be suitably normal-

ized so that the following matrix equalities are satisfied

T MI -E

2
2w 01

2

~2

K;SKUP= W2. ----

0 N~~(

where the diagonal matrix w has as its nonzero elements the modal

natural frequencies of the appendage restricted to vibrate orthogonal

to the plane of the flexible structure. These frequencies are the

loaded natural frequencies of the appendage accounting for preload
A

(recall that centripetal effects are zero for vibrations in the z

direction).
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Define the N by 1 column matrices

x X

6 -r MF E
y y

and rewrite Equation (21) as

H = 1 h 2 2 (C-A) + 1 h
2

2 (C- B)

h2 02 T h2o1 T

AC 2x + BC y C

12 h 2E -T 

~~~~~~h 2h

2+ A y y B x 

AC~~~ x BC 2yy

AC
2

B

E -~ -6Ti{ (22)

Note that the identity matrix E in Equation (22) is of dimension

N by N.

The N modal deformation coordinates of equation (22) are

now truncated to a single mode, identified by index 1 (although not

necessarily the mode having the lowest frequency); thus the total

number of coordinates is reduced to three. Accordingly the N by 1

column matrices r, 6x, and 6 reduce to the scalars r1' 6 x1' and
Y

6yl respectively; and the N by N matrix of modal frequencies
2

reduces to the scalar w . Implementing this simplification allows

us to write the stability condition (H positive definite) as

86



1 2 2 (C- A) 1 h2 2 (C- B)
2 2 AC 2 1 BC

h2 2 h281

AC 
6
xl 71 + BC 6 yl 71

1 2 (2 h2 2 2
+ 2 n1 6W 

+
l2 1 1 AC 2 xl BC2 i)

+ 1 2(AB - B 6yl - A 621) > 0 (23)

where it is to be understood that > 0 means positive for all values of

01,0 82 2l and h1 in the neighborhood of the origin 01 = 0 2= r1 = 11 = 0,

except equal to zero at the origin itself. Note that the last term in

expression (23), and similarly its general counterpart in Equation

(21), is uncoupled from the remaining terms; moreover it is a positive

definite function. We shall demonstrate this by implementing

interpretations set forth in Reference 11.

T ~~TIn general, the terms T Mr E and T MT E are N by 1x--y
T Tmatrices so that 6 = 1 Mr E and 6 1 = Mr E are both

scalars. The products

6T 6 = ET r F M T E
x X- x X-

T T T
6 6 = E r MooMFr E
y y - y y-

are identified in Reference 11 as the moment of inertia differences
Aof the total structure and that of the rigid core about the body y

A
and x axes, respectively. Moreover

T T T T
6 6 = 66 =E Tr M MTMr E
x y y x - x y-

is identified as the cross products of inertia of the flexible appendage
A Awith respect to the x and y principal axes of the total structure.
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With these interpretations consider the geometrical representation

in Figure 8 and define:
AA
AC A z as principal axes of the rigid core;
A A

xa ' a' za as principal axes of the flexible appendage;
AAand , 9y as the total system principal axes

xA~~~~y, ~

XA (a, ZC, DIRECTED
OUT OF THE PAPER)

Ya A 
A/4A
Ya A YC

Figure 8. Principal Axes
Figure 8. Principal Axes

Total System.

Inertia About

X, y, z

o 0 0o

0 B 0

0O 0 C

Rigid Core Inertia

About A A AAbout x, y, z

D 0

B' 0

A'

D

0 C'

+

Flexible Appendage
A A A

Inertia About x, y, z

-T 6
Y Y

6T6
x y

0

T6T6
x y

T6T 6
X X

0

0

0

C
a

Note that (6 T 6x)(6T 6 ) > (6 6 )(6 6 ) and that D = - T6 .
Xx yy Xy Xy x y

Thus by properties of physical realizable inertia matrices (positive

definite) we conclude that

T T
A' B' > (6T 6 )(6x 6 )

x y y
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T ~T6
And in particular for 6 =6 and 6T6 we observe thatx xI yyl

A' B' - (6x 6yl )
2

> 0

With A' and B' identified as (A- 621) and (B- 62xl), respectively, it

is clear by substitution that our immediate objective has been

satisfied, i. e.,

A, B' - (6 xl6 ) = (A - 62l)(B- 6 - (6 6 )l 2Xl yl yl xi Xl y

= AB -B6 - A 62yl 'Axl

At the risk of over-kill we shall demonstrate the satisfaction of
2 2AB -B6 y - A 6xl > 0 by way of example. Thus consider a

particle connected to a rigid core as in Figure 9.

A
Xc

A
Ya

Ax

Figure 9. Principal Axes for Particle Appendage System

A A AThe inertia matrix of the particle with respect to the x, y, z axes is

0

0

M(-2 + 2 )
x y

-2mxy
y

-mf']?
x y

0

-mr rxy

m-2
x

0
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So that we may identify the following:

2 -26 =m 
yl y

62 = m r22 -2
xl x

6
xl 

6
yl mr 

1 xxy

A A A
If the inertia matrix of the core about the x, y, z axes is defined as

A' D O

D B' 0

Lo 0 C

then it is clear that D is precisely mr r . By virtue of positive
x y

definiteness of physically realizable bodies, we are assured that

2-2-2AI B' - m 2 >0x y

It is of interest to observe that the term we have been directing our

attention to is the leading coefficient of the characteristic equation

descriptive of wobble motion. In particular, the characteristic

equation for the example at hand is given by

I S Q(Iz - I ) mr (2 +S 
2
)

x z y y

W(I - I z) I S -m- (Qm 2 + S2 ) = 0
x z y x x

S +fF Q2F - r S S2 + 2 wS + 2
y x y x

The leading coefficient (of S ) is observed to be

I I -mI V2 -mI 2 A'B'- m22 f 2

xy x x y y x y

All this may in fact be superfluous to the reader in that after

proper interpretation of terms it may be obvious that the expression
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(AB - B6 2 1 - A6 2xl) is indeed greater than zero. Moreover, its

general counterpart

t E -1 6 T 1 r6 T )
(\E- X6 - -6y y B x x'

through properties of physically realizable structures must also be

positive definite; a somewhat less obvious fact but nevertheless true.

In any case no new stability criteria emerges from these

considerations.

Having established that for physically realizable inertia
.2properties the coefficient of 'l is positive, we have left then to

consider the condition

h20
1 h2 2 (C-A) +h1 2 2 (C- B) 2
2 2 AC 2 1 BC- AC 6 xl 1

h281lyl 1 2 h 2 2+ BC AC1+2 no (1 + AC 2 62 + Bh 62 ) > (24)
AC
2

BC
2

which may alternatively be written as

h2 (C- B) 0 h
2

6yl
2 BC 2 BC

h
2

(C-A) h
2

6 2 1(810 2 1)>0
1l2 1' 2 AC 2 AC 02

6lh2xl 2 x6 2 2xl + 2

2 BC 2 AC 1+AC21iAC 26

The sign character of the above quadratic function is determined by

testing the sign character of its corresponding symmetric matrix; and

by Sylvester' s Theorem (Reference 16) we are assured that for the

cited matrix to be positive definite it is necessary and sufficient that

all principal diagonal minors be simultaneously positive. If this test
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fails, H is either sign variable (implying instability) or positive

semidefinite (but not positive definite). If we exclude this latter

class of systems (thereby excluding limiting cases such as axi-

symmetric vehicles with C = A or C = B), then conditions both

necessary and sufficient for asymptotic stability of the restricted

planar appendage model are:

h2 (C-B)>
2 BC

(C- B) .

BC
h2 (C-A)

> 02 AC

h
2

(C- B) h
2

(C- A)
2 BC 2 AC

h262 X

2BC 4BC

The combination of the first

sink methods, requires that

moment of inertia, i. e.,

2 22
[li h2 62xl

2I +h e +
-2 2AC2

h22 6 h462 
yl xl4C|

2BC 2 4A2C 2

(C- A)] > 0
AC >

two conditions, as predicted by energy

the spin axis be the axis of maximum

C > A and C > B

This, of course, we have observed before. In addition however

a new criterion emerges, requiring satisfaction of the third condition

above. After expansion and combination of terms this additional

criterion takes the form

2 h 62 2 (C- B) + 62 (C- A)
W2
> [ xi1y[C2 (C- A)(C - B) j

By replacing h by its zeroth order approximation CSi, where Q

is the nominal spin frequency, the above condition simplifies to the

following:
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2 6x21 (C-B) + 62yl (C-A) (25)

()> X(C- A) (C - B)

Thus a stability criterion arises which explicitly bounds the first

modal frequency of the N particle structure. By inspection one

observes that this criterion is more stringent than the maximum

moment of inertia rule. Although the terminology "first mode" has

been used throughout this development it should be clear that the

above condition is applicable to any mode.

Algebraic difficulty precludes the generation of explicit

stability criteria for more than one mode; however, for reference,

the general stability criterion is written in its simpler matrix form

below. (We shall in the next Chapter extend stability criteria by

implementing an observation brought to light by Routh-Hurwitz

analysis.)

h2 2
2 -hyl h26y 2

h2(C-B) 0 BC BC . . .
2CB

2 h~~~~~~2 6 h2a
0 h2(C- A) E h26xl h26x2_____ ~ ~ ~ xix2

2AC AC AC ......

22a 226 2 2x__ _ + 1 _i, + __
(6182:2 ...... - 6 ... >o 

(182i rl1 2... BC AC 2AC 2 2 2 .0
2C2BC

2 222 2
I~~hI h

!~h2 h 2 6
2 h2 2 2x2+ ~

BC AC 0 2 2 22AC 2BC

(26)
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PRECEDING PAGE BLANK NOT FILMED

CHAPTER 4

ROUTH-HURWITZ ANALYSIS

In the previous chapter stability criteria were derived for a

structure having a general planar flexible appendage configured such

that the appendage particles in their undeformed state lie in a plane

perpendicular to the principal axis of spin (z axis) and passing

through the system center of a mass, (Figure 7). As the develop-

ment is algebraically cumbersome it is expected that some difficulty

in complete acceptance might lie in the minds of the reader. To

restore confidence in these results we shall in this chapter rederive

the stability conditions given by Equation (25) by linearizing the

equations of motion and then applying the familiar Routh-Hurwitz

criteria. We shall then use these results to derive stability criteria

for some simple models; in particular, the simple particle model of

Chapter 2 will be redeveloped.

In this chapter we shall also consider the case where the

model in its deformed state has a displacement along the principal

axis of spin (i. e., r z X 0). Although the results for this model will

be limited in that only a single particle will be considered, this case

does provide some insight into the more general problem. We will

find that for rz 0 stability will be degraded.
z

Finally, we conclude both this chapter and the dissertation by

considering methods of enhancing stability by both a rigid rotor

(momentum wheel) allowed to rotate in the direction of spin, and a

controller implementing the use of an idealized proportional effector

(as for example, control moment gyros).

Single Mode Stability Analysis

Equations of motion for the appendage are derived in Appendix

I. In particular, Newton' s Law for the i the flexibleI. In particular, Newton' s Law for the i particle of the flexible
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appendage, Equation (I-3) is

FdQ ++ (ui ' mi 'u-

i i 1+ [~w+wQ) r i+Q u i -, ZmjuJ)]

where Fdand Fk represent damping and stiffness forces,

respectively.

Stability criteria for the simplification where CM shifts may

be neglected are initially developed; and then as in Chapter 3 the

criteria are redeveloped to include these effects. Implementing

this simplification allows the above equation to be written as:

Fi = m~ i i .i ~ i 
Fd k i. u +wF +2Qu+ ( w+w )r + QQui

A
With the spin directed along the z axis the above equations reduce

to:

2 ilii
m i u - 2m.0u - m.Q2u -(Fd+Fk)

1 y Fd k)x

y ~~~~~~~~~ ~~(27a)mi[(*z - ~ri) - m i (-2 Qw r + Q W r 1) (27b)y y Yz z x 

i 2 i iii

~~~~~~~~~~i

mu
y

+2m
.

i
f
i

l
um.2 u(i+FIyz di x 1 y dx/

where the subscripts on the dam.ping and stiffness forces Fd and

i~~~~~~~~~

Fh, respectively, denote the corresponding components; for

Appendix I, are:

.i AFd i (2c

where~~~~~~~~~~~~~~~~ the xsrit contedmponend tifns ofocs
i

example (Fi +Fk representsth xc opnnf(Fd+ F).

The rotational equations of motion, equations (1-7) of

Appendix I, are:
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Aw- w (B- C) +2 2 m (riu i + ri u i )

+ Zmi (r ii -r Ui)- 2Q ZmnrjuA'= 0 (28a)

Bw+ Qm ..w (A- C)- mE. (r~ u 0 

y X 1 X z x

(riui+riui)
y x -mi\x z z x!

i.i=
+ xm iuy z7u -) - 2 SŽm.rFL = 0 (28b)

Cv+ Zm (r i U-Ii ri )+ 2 Zm. (rifl i + ri
1 i ) = 0 (28c)

z i x y y x \ x. x y y

Assume the following:

1) (F + F) and (F + Fk) are independent of u and A

)X d )y zuand i i ~~~~i i .i 
2) (F i + F

) is independent of u, u, u and ui
i~~~~~~~~~~~

3) r i =0
z

These are precisely the assumptions employed in Chapter 3 which

allowed us to isolate that portion of the Hamiltonian descriptive of

wobble motion. With the equations of motion in front of us, this

separation is more apparent. That is, Equations (27a), (27b), and

(28c) separate from Equations (27c), (28a) and (28b). The latter

three, the wobble equations, are rewritten below

mI u= -+ = -) -m(Pw r + Q wx r (29a)1 z y x x (29a) 

m(Q2 2 yui+Iii) =Aw - 2w (B- C)+m ( 2 ri + rii O0 (29b)
x y y z z

2 ii 0
Bwy+ Ow (A- C)- Zmi (Q rxu z + rxu (29c)y ~~~~~x

Equation (2 9 a) may be written as the following composite appendage

matrix equation:
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M4+Dq+Kq = Mr x E (y- aw) - Mr E(Vx+ wy (30a)x- y x y- x y

where (Fd + FI) has been replaced by its matrix counterparts
kz

- (D4 + Kq). All terms in Equation (30a) were previously identified

in Chapter 3 except for the damping matrix D which is simply an N by

N diagonal matrix consisting of elements representative of damping

coefficients for each of the N particles, i. e.,

0 0 . .

2o d 0 . . .
z

D= 0 0

zN by N

Similarly, Equations (29b) and (29c) become:

Aw - Ow (B- C) + 2(MI r E)Tq + (Mr E)Tq = 0 (30b)
x y y- y-

B* + 2w (A- C) - Q2 (Mr E) q -(M E) q = O (30c)
y x q x-

where as before

1 .i
T 

(MrE) (1l 1,. 1) K x K|:i:;2i21

N

0 ... rN ° ... m N

= rml' rm2 . . .. rmN)

To proceed, we neglect damping and replace q by ~r, where

is the matrix of eigenvectors obtained from the eigenvalue problem

associated with the homogeneous matrix equation

Mq +Kq = 0
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For complete details see Reference (11). As in the previous

chapter we shall employ the simplification of Reference (11)

wherein 0 is suitably normalized such that

T
TM = E

2

=~~~~~~~

2 MT E T (31A 2
K 2S=w2 - w

0 2 (N by N

Thus, after neglecting damping and replacing q by fr in Equation

(30a), and premultiplying by ST one finds:

diagonal N by N damping matrix y is defined as

1

22

' * ' N by N

With Sx- tS MrFx E and 6y- ST Mry E one finds that Equation

AW - Q w (B- C) + Q2 6T 7 + T = O (32b)
x y y y

~2T 

y x x x
wTruncate to one modal coordinate so that

TrnAtetnemdlcoriae x ota
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1 6x
= 6xl

2 2
wL 6 = 6y yl
all of which are scalars. The set of Equation (32a-c) then reduces

to:

il+2 rlll+w211 sxl( 2Qw x ) - 6+ n (* w ) (32d)

~~~~~y-6lx y
2

A w - Q w y(B-C) + Q 6y l 911+ 6yl {il 0 (32e)

B + 2 Wx(A-C) - 2 xl 1 xl 6 - 0 (320y x Xll XI

With S the Laplacian operator the characteristic equation can be

written as:

A S Q (C -B) 6 (Q2 +S 
2

)

2Q (A- C) B S 6 1 (Q +) = O

(Q26 6 ) (- 6x S + y6 2) S 2+2 wS +w2
XI yl l IS+~ S w1

In the following for notation simplicity the subscript unity has been

dropped. With this simplification the above expands to:

S LAB - A 62 - B 6 2]
x Y]

+S3 x2wAB+A 6 y- 6 6 (C-B)Q2-B6x6yQ+ 6 X6 (C-A)Qx y x y y 

+ S
2

[Q 2(C-A)(C-B) + 2AB- A6 22 _ 6202(C-B)
X X

B 62Q2 62Q2(C- A1
y y

+ Sr2{Q (C-A)(C-B) + A 6xy3 - 6x6y(C- B)Q 3

-B 6 03 + 6 6 (C-A)Q 3
xy x y

2 2 2 4_ 2 4+ 2Q (C- A)(C- B) - 62(C -B) 4 6 (C - A) 4 = 0
x y
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Identify the coefficients of S 
3
, S 

2
, Si , and S as p3 , P 2 , P1 and pO,

respectively. From the previous chapter we are assured that

~~2 2 AB-A 2 -B y >0
x 2 y

allowing us to divide through by this quantity. The conditions both

necessary and sufficient* for asymptotic stability of the wobble

equations are obtained by satisfying the following inequalities

p3 > 0

Pi > 0
2 2

Pl P2 P3 - P1 - p0 p 3 > 0
p0 > 0

The condition p3 > 0 

2 w AB + 6 6 Q2[A- C + B - B + C -A] > O
x y

X > 0 as in the simple particle model of Chapter 2. The condition

Pi >° 0 F

2 3
2 w 2 (C-A)(C-B) + 6x 6y [A-C +B -B +C -A]>0

xy (C - A)(C - B) > 

which is the familiar stability criterion for rigid spinning bodies.

The condition p1 P2 P3 - 2P P21 2 3 p 0 3o
[2 wQ (C-A)(C-B) 1 P2 (2 r w AB)

-(AB-A6 2_ B6 )(2)2)2 4(C-A) (C-B)
x y

1w 2 2 (C- A)(C- B) 6 2(C- B)Q4 -6 2(C- A)QI] (2rwAB) >0

The qualification in the footnote on page 30 applies again here, and
stands as an obstacle to rigorous determination of sufficient condi-
tions for asymptotic stability; only in the special case adopted in the
assumptions following Eq. (28) can it be shown that even the non-
linear version of Eq. (28c) says tz = 0, permitting a rigorous argu-
ment to be established via Routh-Hurwitz also.
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ABQ (C- A)(C- B)p2 - (AB- A6x
2

- B 6y )2Q (C- A)2(C- B)2

(AB)2L 2n 2 (C- A)(C- B) - 6 2 (C- B)Q 4 - 62(C - A)4] > 0

ABQ2 (C- A)(C- B)p2 - ABQ (C- A) (C- B)

+A6 2Q4(C- A)(C-B)2+ B6 24(C-A)2(C
- B)

y

- (AB) 2 2 (C- A)(C- B) + (AB) 6J Q (C- B)

+ (AB)6 2Q4(C - A) > 0

Substitution of

p = Q2(C-A)(C-B) +w 2AB- 6 2 2(C- B+A)- 6 2 (C- A +B)2 ~~~~~x y

provides:

ABQ (C- A)(C- 
B ) I - 6

2
2

2
(C- B +A) - 6 22(C- A + B)]
x ~~~y

+ A 6 2 4(C - A)2(C- B)2+ B 62Q4(C- A) (C- B)

+ (AB) 2 6x24(C- B) + (AB)2 y24(C- A) > 0

X 2 [-AB(C-A)(C-B)(C-B+A)+A(C-A) 2(C-B)2 + (AB)2(C-B) 1

+ y [- AB(C-A)(C-B)(C-A +B) +B(C-A)2 (C-B)
2

+ (AB)2(C - A ] > 0

which requires that each bracket be greater than zero.
Note: S term. in each bracket is always negative

Note: 1 term in each bracket is always posinegative
2 n term in each bracket is always positive

3
r d term in each bracket is positive for C the maximum

moment of inertia and negative for C the minimum

moment of inertia.

Consider the requirement that the coefficient of x
2

be > 0
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- AB(C- A)(C- B)(C-B+A)+A(C-A)2(C-B) 2 +(AB)2(C-B)] > 0

Dividing through by A(C- A)(C- B), which is always positive, gives

AB 2
-B(C-B+A)+(C-A)(C-B) + C-A > 0

AB 2

(C A) - AB + (C- B)(C- A- B) > 0

AB(BC A ) +(C-B)(C-A-B)>O

AB
(C-A) (B +A - C) >(C- B)(B +A -C)

but B + A - C is always > 0, therefore

AB > C B
(C- A)

If C is the maximum moment of inertia then AB > (C- A)(C- B)....

an inequality always satisfied. If C is the minimum moment of

inertia then AB < (C-A)(C- B).... an inequality never satisfied.

The requirement that the coefficient of 62 be > 0 leads to the
Y

AB > C 
(C- B)

resulting in the same conclusion, namely

C>A and C>B

which is the familiar stability criterion predicted by energy sink

methods for spinning bodies with energy dissipation. The condition

p > 0=

( 12 6 xl(C- B) + 6 2(C- A)

> (C- A)(C- B)

(Note that we have now returned to the more general nomenclature

where the subscript unity is employed to denote the first mode).
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These three inequalities are both necessary and sufficient for

asymptotic stability of the null solution of the linearized wobble

equations (32d) - (32f) for single mode vibration. Reversal of one

of these equalities (changing > to <) is sufficient for instability of

that null solution. The limitations of linearization as a method for

stability analysis are such that in either of the cases just cited, the

stability properties of the linearized equation belong also to the

corresponding nonlinear equation; but if inspection shows that in the

preceding inequalities the symbol > is violated and equality prevails,

then the linearized equations are useless. Since this is possible

only for vehicles belonging to certain limiting cases (e. g., with

C = A or C = B), such vehicles will be excluded from consideration.

Thus, with this provision, and with the acknowledgment of the

previous footnote, we conclude that conditions both necessary and

sufficient for asymptotic stability of spin as established by the

equations of wobble motion of the given class of vehicle are:

C>A and C>B

Li 2 xl ( C - B ) + 6 2 ( C - A )_, > X1 Y (33)
Q / (C- A) (C- B)

which are identical to the criteria developed in Chapter 3, except

that at this stage the mass matrix M, as opposed to the more

general matrix M', was used in the modal analysis. It is shown

below that this discrepancy vanishes by accounting for CM shifts.

One can account for CM shifts in a straight forward manner

by incorporating the term E ~i . By inspection of Equation

(I-3) of Appendix I it is clear that we must consider three additional

terms:
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f Zim j uj

m
i

Since 9 is directed solely about the z axis the first two terms do

not influence deformations in the z direction, i.e.,

/ 2 0 0\2
~ - o0 -n 2o

0 0 0

~Ij /uj \

(:i)~~~~~~~~.Qui= Q tUJ 

The remaining term when combined with mniu appears as:

mi{~ ( , mjU )
which expands to the following 3 by 1 matrix.

/ Pni 1 ( .. i ..2\
x (m 1 u +m2 u + .... )]

1 2
mj u (In y 2 y *

r..i 1 .. ..2mI z - 1u+m2 U z +' ' '

The last equation in the above set influences the wobble equations

and can be handled by modifying the stiffness matrix, to wit
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2
M1 mlm2 MlM.3 r lm N

1 'Ail I/- * * ..... J

2\
2m1 m2 m2n3 2N

M' = X r -2 W . ... ... ' 

i * 2
mNn 1 mNm2 N

.\. m - /

Everything else remains unaltered. Thus the comparison between

the analysis of this and the previous Chapter is complete.

Stability Criteria Extensions

Both here and in Chapter 3 we have developed asymptotic

stability criteria for a spacecraft idealized as a rigid core having

attached a flexible appendage. The appendage was assumed to lie

in a plane containing the CM, normal to the spin axis. Further-

more, the criteria are, for the class of vehicle noted, both

necessary and sufficient for stability of spin, as established by

the wobble motion. We have however, restricted ourselves to

truncation to a single mode. This may be sufficient for many

applications, but nevertheless the question remains as to whether

additional modes further degrade the stability boundary. For

example suppose the lowest two modes exhibit natural frequencies

in close proximity. Can we then assume that the satisfaction of

Equation (33) for each of the modes individually assures stability

for the modes jointly? Questions of this nature motivate us to

develop stability criteria for more than one mode. Such pro-

cedures are compounded by algebraic complexity both in

Liapunov and Routh-Hurwitz techniques. However, by observation

of the analysis of this chapter one concludes that the critical
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stability criterion arises from satisfying the condition p > 0. With

this observation we ask ourselves if it is possible to extract further

criteria by simply satisfying this condition for multiple modes. The

results can be considered formally only as necessary conditions for

asymptotic stability of the null solution of the wobble equations;

nevertheless, useful information is provided.

First consider the case where r = 0 (so 6 = 0). However
X X

we permit 6 to be the general N by 1 matrix. To find p let all
Y

derivatives in Equation (32a-32c) equal zero.

2
w(A =-Q 6 W

y y

- W (B- C) + Q2 6T 7 =O
y y

2w (A-C) - O

The last equation must persist since 6 = 0. The first equation
x

can be written as:

2-1
77= - (w) 6 y w

Y Y

which when substituted into the second equation above results in:

OWy(C- B)+Q2 6T -Q () 2 6 w =0
y yL y y1

Then the condition po > 0 (for F
x

= 0) can be written as

y6T (to2-1
>~2 C-lB 6

we 2 r (34)

where
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1

(2) 1 ,i- - 0 0 0 021 * . * l
0

0 2 /
WN

Similar results arise for the case = 0, to wit
y

6T ( 2) -
1 6

T x1
( t2) > x C A x (35)

Satisfaction of the condition p > 0 for the case where

neither Irx nor y equals zero requires considerably more
xy

algebraic complexity but nevertheless is manageable. To proceed

let all derivatives in Equation (32a-c) equal zero:

2
W = - 06 w - 6 wx x y y

- w (B- C) + 2 6T0 = 0
Y Y

w (A- C) -2 6 I = x ~~x

The first of these is an N by 1 column matrix equation whereas the

last two are scalars. Solving for rl in the former and substitution

into the remaining two equations provides the following:
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Q ((C-B)w -Q6 [w] x +w = 0
YX x y Y

3LJT[Ow 2 w]=O

2(C-A)w x 6 = J LX 0

y y I~x x + 5 Wy] 

S2 )w x -Q dx [w ] 6xwx + 6 w ] = O

Expanding the last two equations yields:

2 T 2]-1 2 T[ 2
(C-B)w - 6 w 6w-6 w 6w =0

y y x x y y y

(C-A)w - 6 w 2T 6 w =0
(-)x x 5x x y y

Therefore,

2 T F2
]

6 w-

W ~x y yw -

(C A) Q2 T[ 2] -1
x x

(C-B)w - 2 6 T[w 2] 6 w
Y Y Y Y

i22T L2Y 6-1 26T 2 ] ] O(c~-A)6; y 6x , Y Y , =0

(C-A) -Q 62 W ]x x~5

Thus, the term p > 0 can be written as:

2 T6 -2(CB)T 2 5(C-A)(C-B) -Q 2 (C-A) 6 T [w2 6_ Q 2 ( C-B)T [w2]6
y y x x

4T j-1 Q4 T[w2] T 2]-1+Q ] x yL y x y y x+~6[o]1 T~2
-

4TL2-66i2

-
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Note: 6 YW] 6] = 6 Lw] 6

Therefore

4 T ] -T1 2]21 -1

(C-A)(C-B) -0 Q C-)Tj 6 - Q (C-B)6T wD 6

+4 T j [ 2 6] T w2 6 >0 (36)
x I x y y x - y

In examining Equation (36) it is clear that for the special case

where [6 6 T_ 6 6 T] = 0 the stability criteria reduces to

L2 (C-A)6 [w] 6 +(C B) 6 w] 6

(1 )2 (C -A) (C -B) (37)

For the case where L6_x(- 6 6xT] 0 Equation (36) may be

further simplified by recognizing that it can be written in the form

4 a +2 b+c >O

where

a 6 x [w 6 6- 6 6 [] 6x L j LX y yx y

b = - [(C - A) w y+ ( cB)6[] 6]

c = (C -A) (C - B)

The quadratic solutions are:

110



L )T~- 2]-1 T 2-1
~ [(-~6~~2]6 +(G- B)6T Lw]

±~/L 2 L x L x y y XL j yx
2 T [,2] LT T~ 6~] [w2j] 

2 6X ] [6 X6 6 [6X] 6 x

which is of the form

2[ 2] 2 [ 2]- I ]-'6T [2

(Q2 +a)(&2 +f)>O

Thus either both terms must be positive or both terms must be

negative. We disregard the possibility of both positive on the

basis that it fails to simplify to previously established stability

criteria. Thus for stability the following inequality must be

satisfied.

2 (C A) 6 [W2] 6 + (C- B) 6]T 2]

2 y x X
21 -1[i]2 6 -, [2] -' --] [ 2 6 ] 1 ] 

-- A) 6 ] 6Y+ (C- B) [z]'X] - 4(C-A)(C-B)6X [ ][666Y6X] [2] Y

,2 6T [2 - - T] [ 2] -

(38)y expanding terms under the radical the above reduces to:

By expanding terms under the radical the above reduces to:

111



Tc[r2] -1 [2] -1[2C- A) 6[ 6y+ (C- B) 6 2 6 ] 1

26 [_2] [,6,6r 6 6T ] [w-2

x [ - Tx

-1 T [W2] -'6x 2] T[2] -1
J[(cT@] 6- (C- B)6, [w2] 6x] + 4(C- A)(C-B)w] - [w ] 6y

2 T [,2] [-x- 6 6 T] [2] -6y

(39)

For the appropriate cases these conditions simplify to

previously established necessary asymptotic stability criteria,

to wit

T_ 6
Case for single mode (note 6x 6 0yx -):xy yx

wl 2 (C- A) 6 + (C- B)62

Q-) (C- A) (C- B)

Case where Fx =0

( 1 ) > Y [ ]; Y ~~~~~~~~(41)
Case where r = 0

x

2 T [t2]-

> y y

(C- B) (41)
Case where r = 0

y

)2 6 T [L2] -1 

(1)2 X(C - A) (2
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Stability Criteria Applications

We shall now pause and apply the established stability criteria

to two simple models, the first of which is the simple two-particle

model of Figure 1, repeated here

A
z

2 nd PARTICLE

mI-- - - - -m

x/

Figure 1. Simple Particle Model

M =m

I
2

; = = 2
2 4-m-

Note that T M = E

r = 0 so that 6
x x

y= 

\YY

.. 6 =Tmr E 2
y Y- - 2'/m

as it should

-- 0

(1
1

· denoting r1 =
Y

(2\

(oJ
= q2m fy

2

- 2 -=
Y Y

0 ~y A/10

/1)

N r ( )
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For the problem under consideration we let w1 denote the

asymmetric mode natural frequency and let w2 denote the (slightly

higher) symmetric mode natural frequency, i. e.,

2 (wl ° )
WV W2

c2

Thus,

'10
(j2 W1~~0 2

o2'

Substitution into Equation (41) allows the following:

2 [2T [ ] 6
(1> Y Y

(ii) ( C -B)

~((C -B)

~~~~~~~2m 2(C ~B)

=~~~2m F2
y

(W 1)2 (C- B)

or as written in Chapter 2.

2 -2w 2m 2

(O >(C- B)

Note that the symmetric mode of vibration has no influence on the

attitude stability criterion. (This is evident as soon as 6 is known.)
Y
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Now apply the stability criteria to a slightly more complicated

model, sketched in Figure 10. The stability criteria of Equation

(38) will be employed.

A
Z

Ax

Figure 10. Simple Four-Particle M

Define the loaded frequencies

for the cantilever beams

m2 supporting m 1 and m2 as w
1

and crl, respectively. These

A frequencies will characterize
1

the asymmetric modes of

vibration, while the sym-

metric modes will be

lodel denoted w2 and u2 '

The following matrices are applicable.

[rn1 0

0

0

0

m.

0

0

sP= 1

0 0

0 0 r=x
m 2 0 ;

0 m2

1

/m
1

0

0

0 0 0 0

0 0 0 0

0 0 ,e 0 ;

o0 0 0 -

1 0

1
I 0

4m2lqM.1

0 1

,,m2

0 1

M2

r=
y

0

0

1

m 2

1

1m2 _

d 0 0 0O

O-d 0 0

0 0 0 0

0 0 0 0

115

.LI



6x. = TM rx E =___L6 4'-MT 'E

1

sIm
1

0

0

1

1

1m

1m

0

0

0 1

4m 2

0 1

m2

0

0

1

m2

1

4M2

m2I

0o 0 0 o

0 0 0 0

0 0 1 0

0 0 0 -1

1

1

/m!

1J 

I4;
1Im

0

0

0 0 1

qm 2

0 1

qm
2

= 2m 2 . 0

0 

1
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1
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1I
1

qm1

1

1m m

0

m2Q

f2

0

0

0

1
1

2

1

qm 2

0

0

2

qm2

0 .o



Similarly,

6
y

= /2m

Note that only the asymmetric modes contribute to 6 and
2 ~~~~~~X

0 0

w2~o 0
2 2

0o 0
0 0

0

0

2
a2

[2]-1

2/w2

1

0 1

0

6-
y

0 0 0

/w 0 0
-2

0 1 /a21/0 0

0 0 0 1/(21/2

Therefore

-1 2m1 d
65 = 2
y L2

W1

-1 2m 2 2
6 = 2
x 2

01

-Nj2m
1

d I

0

0

1

oj
(1000) - (0010)]

T- 66 =/2m 
yx 2

0 0 -1 01

0 0 0 01

1

0

0

0

0 0

0 0

So that
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0

02
W1

0

0
[w2] =

0

T [ 2]
6 [2

6T r J21
xl 

6 T
xy

= 2 , d ]mlm 2



T [WI] [66T 6T] L ]

=6T[w2]X

-1
= T [ 2]=X 

-1Q ___

2Ad/mlM
2

-1
6
y

]O 0 -1

0

1

0

0

0

0

2 d m1 4 2mm1 2

Therefore

T ]-1 T
6 [W2] [ 6 6 - 6X I Y y 

= r22 ,2 (o 0 1 0o)

y
1] [W2 16

2
1/w I 0 0

1 20/0 11/W.. 2
- 2

0 0

0 0
1/a
0

0

0

0 2 d2M / 2m
I1 2

1la2/c2]

4m 1 m2 2 d
1 -2
2 2

al w 1

Henc e

2 Tx [w2]- [6 6 - 6 6 ] [w2]
-1 8 m 1 2

6x = 2 2
1 w1

One of the terms under the radical of Equation (38) expands as
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1/w1

0

0

0

0 0

0 0

0 0

1 Ai"' o2 2
0 1/a1

0 0

0

0

l/cr
2

/J2m d
1

F1f
0

0

p

0

0

1OwJ1/l

0

o7
02

1/w

0
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4(C-A)(C-B) 6 T [w 2 L6 6 ] [] 6 Y
x Ix y y x y

1 6 mm2d2

2 2
I W1

(C -A) (C -B)

The remaining term under the radical simplifies as follows:
2

L(C-A) 6TLw2 6 +(C-

2m 1 +
= (C- A) 2 +(C- B

' ~WI

B) X w] 6x]

4m2 d4d mlm2d 22
= 4 (C- A)2 + 8(C- A)(C- B) 2 2Thus 2he rdciEqa s 2

W1 r c1 i

Thus the radical in Equation (38) becomes

4m2 I4(C- B)
+ 2

4
aIl

4m2d4 (C-A) 2

4
W1

+

4m2 4(C- B)2
4

a1l

28(C- A)(C- B)mm 2d8(C- A)(C- B)m.1 In2 Y d

2 2
L1 1

= [( C A)
2mld2

1
2

W1

2 m 2 2

-(C- B) 2
211

Substitution into Equation (38) provides two solutions:

119



( C- A)
2mld2

2 +(C- B)2
wI

2m 2

2 ]
a 1

8 mlm 2 d
2

1 2
2 2

2mld2 2m 222
I(C- A) 2 (C- B) 2 ]

w1 a1

8m m2 2 d

1 2

2 2
a1)

i11

First solution is

4 m 1 d (C- A)

2
w1

8m m2d21 2
2 2

OlW

(C- A) a2
_a2 1

2m B2
2

Therefore

a1 2

( +)

2m2 e,2
>( 2

(C- A)

And the second solution leads to:

4m 2 2

2
I
2 (C-Ba1

8m I1 m 22 2d2

2 2
1 W1

(C- B) w2

2m1 d
2m1 d 

2

Hence

120

2 <

<

2 <

Q2 <



2 2 m 1 d

VQY) > (C-B)

It is of interest to observe that stability analysis of the crossed

dipole configuration yields two uncoupled stability conditions; the

same criteria would persist in considering two single dipole config-

urations one mounted along the x body axis and the other mounted

along the A body axis.

It is hoped that the above examples will aid the reader in

using the results of this dissertation. Clearly however for other

than very simple models a modal analysis must precede the imple-

mentation of these results. Nevertheless, these simple models do

provide insight into the more general problem. In this context a

summary of stability criteria for simple particle models is

delineated in Appendix III, along with the more pertinent results of

this dissertation.

Examination of the Case r X 0
Z-

We shall now superficially examine the more general problem

where I'
z

0. This generalization greatly compounds the analysis

in that the spin and wobble equations no longer separate. Thus

even for a single particle one has to contend with a ninth order

characteristic equation. However, if we simply examine the

necessary condition p > 0 some useful criteria emerge. To begin

let us write the equations of motion for a spacecraft idealized as a

rigid body having attached a single flexible particle of mass m
- A - A -A

with = rx + ry y + rz Zto wit
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k
u - 2 u-_ u2 + x u

x y x m x

= ; - )- (-2Qw r +Q w r)z y y z z x x z

2 k
u +2Qu -2u + Y u
y x y m y

k

· r - - (-2W Ž' +wr)

+(rU rzy2~~x =0
Bu +~2 (AC -2mr~u

- + - (Qw r + Qw r
z m z y x x y y x

Ax - w (B- C)+ 02m (U +rr uy
)

+m(rz ) -2QmrT' =0
y ZZ y/ Z X

Bw + Qw (A- C) - 0 2M(f Uz +r u)

+ m.(r; 'u -r T;IU -2 Om.r A 0=

c~ w + m (fUy - U + 2 Q m (x x+iT A 0

+° x(~c ° (~x ~ u) =

or, upon integration and selection of appropriate constant of

integration

As before the loaded natural frequencies are identified as a, a,

and a, and their counterparts accounting for centripetal acceler-

ation terms are identified as w , w, and w .(note a = w ). Thus,

Y Uz z x~~~~z 

setting all derivatives equal to zero in the above set of equations

and expanding the determinant results in the necessary condition

for stability p> 0. The algebraic equations resulting from the

preceding differential equations are
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2
U t = -

X x

2
U t - =-
Y Y

2
U w = -

z z

(-2Qw i +Qw )
z x x z

(-2w r +Qw r )
z y y Z

(Qw y +xw r)y y X X

~.Qw (B--C)+f2 2 m(% -- y)0
2

- w(B- C) + 2m ( u + r u =0y y Z ZY

O w (A- C) - In1U + f U.) = 0

Cw +2 2Qm(r u +F u =
ZX Z y 

z~~~ x y

Simply in order to reduce the determinant dimension from the

intolerably tedious present value of six to the tolerably tedious

value of five, we set one deformation component to zero. If we

choose for example to constrain u to zero (so k = oo), we have
for p> Y the expressionfor Po > 0 the expression

z

xZ

Qx

0 - 2Xr

y

0 Q (C-B)

Q(A-C) o0

0 0

0

0

2
wxLi

x

0

0

0~~~0 - 2m r
z

C 22 mf
x

Expanding the above results in:
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-20.x
X

or
x

0

or
y

Q(C- B)

0

0

or
z

0

Q(A-C)

Therefore,

(2 Q rx)(2 Q mr x )

+CoPz

+ Cw 2

x

0

0

y

Q (C-B)

0

Q r
x
0

Q(A- C)

y

Q(C- B)

0

0

2
- Qm.F

z

x

2
w

x

0

0

- Q Mr
z

or
y

Q(C - B)

0

0

0

0 - 2-
0 - 2 mr

Z

x

0

IQ(A-C)

y

Q(C-B)

0

2
w

Q 2 rn

2

x

0

0

2
wz
mi

- 02mr
x

2
w

z

yI2-m
- 2m r

x

2
wz

02M 
y

- Q2mr2-
x

2
w

z

Q2 mr
y

2-Q~mr
- 2 .x X
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Upon further expansion one finds:

w2 + 4mQ 2r) 2 2; r[ mOQ 3 (C- B) r]

+(A-C)m 3 2x w2(C B)]1
3 0 2(C-

[M y z

+ C zQ r (m24r )
zL y y X +w 2 (-mQ r (C-B))] >0ZZ 

which leads to the necessary condition

4mQ2r2)
4mx [2 Q2 (C- A)(C- B)

1Wz

- m. 42 (C- A)
y

-mQ4 2(C-B)
x B

2 4-2 2 6 -2- 2- w mQ Fr C(C-B) +m 2 r1' C >0
Z z y z

First consider the case where r = r = 0. Then
x z

2C [ 2 A 2 (CC P2z2(CA)(C _B)-mQ 4 _(C-A >0
x Z y

* CW 2 (C -A) iw (C-B)
x LZ

- mQ2 r2] > 0
Y

wi 2 m. 2
z ) A> y

XQ J C-B

which is the same criterion derived earlier, for a single particle

on the y-axis. As before, a similar condition emerges for the

case where F = r = 0, i.e.,
y z

2
( Z)

mr2
x

(C-A)(C -A)

125

(Cw2x +(Cx

(43)



However, a condition we have not seen before arises for the case

where f = = 0:
x y

w 2 mr 2

X)>(Q) (C-A)

Although not analyzed one surmises (by similarity) that for k = oo
X

k ; oo, and r = r = 0 the following condition would result
y x y

w 2 mP 2

ZY)> ( Q) (C-B)

Equation (43) could also be used to generate stability criteria

for the case where only r z = o0, a simplification leading to criteria
z

observed a number of times in this dissertation, i.e.,

w 2 m 2(C-A) + m r (C-B)y ~~ x
( > )(C-A)(C-B)

A more interesting case occurs if one allows only F = 0,
X

namely

CwL2 [W22(C- A)(C- B) -m Q4r2(C- A)
x L y

2 42 2622
-wm P m r C(C- B) + m2 Q C > O

z z y z

w [w C(C-A)(C- B) - mQ2 2r C ( C - B )]z x ~~~~~~z

-C W 2m2 P2(C-A) +m2 4 Pr,2 C > 0
x y y z

Z C(C- B)2(C- A) - m 2 2]

-m2r, 2 C[w2(C-A) _mQ2r2] >0

x(C- A) - mQ 2 r] 2 (C- B) - mQ r j > 0
x ~~Z 1WZ 
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Disregarding the possibility that both brackets may be negative

the above leads to:

w 2 mr 2

( ) > Co--A(C-A)

W 2 mr 2

(A) > y
> (C-B)

Clearly r • 0 requires the satisfaction of additional stability
Z

criteria. For the case where only r 0 the results are even more
Y

interesting, to wit

(CW2 + 4mQ '2 2 ) WQ2 (C- A)(C- B) - mQ P2 (C- B]

-w 2 mMO4 r 2 C(C- B) > 0

2 m22 (C w2 + 4m2j2)

=*to >
(C-A)(Cw2 + 4mQ 2r2 m2 2 2C

For the first time we observe in the stability criteria a coupling

between the frequencies. With the assumption that the denominator

is greater than zero, i. e.,

w 2 mmP2 4mp2
{ x > z x

i) > (C-A) C

then one concludes that the following is required for stability.

w 2 mn 2

Z ) > x

Mr2C
(C- A) - z

(i)2 + 4im2](•) ~X
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Finally, consider the case where rx • 0, ° ; 0, and r • o.
(Cx y z

(C 2 + 4m. 2 F2 ) [2zw22 (C- A)(C- B)

4 -2-m 4 2(C-
y

A) - mnQ 4 2(C - B)
x

2 4-2 +26-2-2
- Wm m 4 C(C-B) + r r C > oz z y z

(C-A)(C-B) - m2

Q2 C m -2
z

CW2 +4mQ2r2
X X

;2(C-
I Y

[ (C-

A) + r(C- B
x jj

B) _mO2F 2] >0

(C 2

=> ( Q (C - A)(C - B) - m [2(C- A) + -2 (C- B)]

- 2
z

+

[(C- A)(C- B)

-2
Cml2 z

C +4mF
2

X

> m -2y(C -A) +r2(C-B)] -

(C- B)]

C 2 22 '-2Cmy z
_ _ y _-z

C ( x -2+ 4 m 
2 X

As the first bracket above can be written as
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o wz

>0

r-

(w 2

(> Q )

-1

(C - B) - m.. '!y 2



(C- B) (C- A) -

Cm-2Cml2 z
2 l

C + 4m r- 2

(_U) X

we disregard the possibility that it can be less than zero. The

reasoning is as follows: If the expression above is less than zero,

then for

rz = 0 = (C-A)<O

r = xx

Both of which are in violation of previously established criteria.

Hence, the sought after stability criterion can be written as:

m [ry2(C- A) + r' 2(C- B)] -

(C- B) [(C- A) -

z y

2r X 2
C (Q)+ 4 m r -

-2CmF2z 
Ct-O +4mr 2

X

W 2 m r 2

(C - A)

-42
x

C

Exploring only superficially into the problem where Fz X 0 leads to
z

two general conclusions:

1) The problem is greatly compounded.

2) The stability boundary is degraded.
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Control of Passively Unstable Spacecraft

Finally, we consider techniques for enhancing stability of a

spinning flexible body through active control. Clearly this subject

could constitute a dissertation in itself. As such we explore the

subject on a limited scale. Nevertheless the results show conclu-

sively that with relatively simple control techniques a passively

unstable configuration could be stabilized. Two approaches are

considered: (1) A rigid spinning rotor with its momentum directed

along the vehicle spin axis, and (2) An idealized linear controller

which in the first approximation is representative of control moment

gyros.

Consider the expressions representative of the wobble motion

with the appendage equations truncated to one mode and with the

vehicle containing a constant speed axisymmetric rigid rotor with
+Aangular velocity relative to the core in the + z direction:

2 = 
11 + 2 w 1 1 +W1 f1 XIl = Sx(y Qwx - 6yl

(ix y

Aw* -/]wy(B- C)+w h+1 2 6 y l + 6 i = 0x y y yl Y yll~

2
Bw +/Qw (A-C) -w h _-2 6 i -6 r =0y x 6x 1 xl 6xl~il0

where hz is the relative angular momentum of the rotor, h > O.
*

Identify a modified inertia C as
*C h

C C+ -

The wobble equations then become:

0. ~~~2
l + 2~ ti 1 + W 6XIyw y1 =xl y + Q w y

A* - Q w (B- C') + Q 6 17 + 6yl "1 = 0
x y yl 1yl 11

B'-r +?w 
x

(A-C* ') -2 6Xl l -6XI =0
y -x17 x0 
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which are identical in form to the case without the rigid rotor.

Thus, conditions both necessary and sufficient for asymptotic

stability of the wobble equations are:

* *
C > A and C > B

2 6 2(C -B) + 6 (C*- A)
(1 > xl yl

J) (C*- A) (C* - B)

Expanding the latter one finds:

2(l\ 6 2 (C + ) 6h - c+ -A)
"I> xI lY ~~~hC + _ A) (C +- B)

That the rotor can enhance stability is made even more apparent by

rewriting the above in a slightly different form, i. e.,

(,_2 _2_6

> X ) + yl( (C _ A c+h _ (B)

Clearly the right hand side decreases as the relative momentum h

increases.

If instead of a rigid rotor we add control torques proportional

to the transverse inertial angular velocity components, the equations

of motion take the form

fl +2~ v'j 2 6 x Q ~w )-6 ( Q +~w
1 1 + 2 1 1 1 1 11 =

-xl(y
- x)- yl(x+ w )

2
Av - Q w (B- C) + 026 y ~ Y 7 x~I~c~Qwy(B~C)+~Ž 6yl+6yl~' = - kw y

2
B~ y+ wX (A- C) l~ 2 XI XI-kky x - xlil -xlil w x
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The linear control policy could represent to the first approximation

an idealized control moment gyro system. Clearly other control

policies could be implemented. However, the one chosen, as with

a rigid rotor, can be analyzed by similarity. That is, by identifying

~_ -c kC=C+ k

the equations again reduce to the previously analyzed uncontrolled

case with C replacing C. Thus the stability criteria can again be

written by inspection, to wit

C>A and C>B

12 6 1(C -B) + i (C -A)
>xl yl(C-A

(C -A)(C-B)

The latter expands to:

2 6 2 C +k B) + 6 2(C + - A
I~ ~ -B1 + yl 0 A

>~~ -a kC k - B
)( C +- A) (C +- -

Combining both a rigid rotor and a linear controller yields the

following stability criteria:

(C + + h) >A and (C k+ ) + >B

(h) x2 k (C +k +h
(W )2 sC + + - - B) + 6 1+ - - A)

k h
Q (~C + k+ _-B) (C + -+ --A)

A catalogue of necessary conditions for stability, terminating with

this the final example, can be found in Appendix III.
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APPENDIX I

PARTICLE EQUATIONS OF MOTION LINEARIZED ABOUT
THE LOADED STRUCTURE CONFIGURATION

The appendage equation for a spinning flexible vehicle wherein

the appendage is assumed to consist of a collection of particles, may

be derived from Equation (80) of Reference 11 which represents the

most general formulation of the appendage equation. This follows

by identifying C as the identity matrix and permitting e to be zero.

The first identification assures that the appendage is not gimballed

with respect to the core, and the latter restricts center of mass

shifts solely to those due to appendage deformations. These

restrictions permit Equation (80) of Reference 11 to be written as

i F~~e .li +~~~~ ~,=m.Le ul -Z wuJ Liw(p zs J

- R~i)w'+w(ui _m J u)
m.

+ ww (R.+r +u _- J) (I- 1)

Where F is representative of external forces and the remaining
e

variables are as defined in Figure 5 with the sum R' + C' identified
it i I~~~~

as R and r i+ i identified as r . Letting

i iF = R+r
r R. + r+A--j "

Rev+ rif + A 1a;Mj i mj

F =0
e
U = w +

and linearizing about u, w (and their derivatives) permits Equation

(I-1) to be written as
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Fi =:mi [ -I E umj uj +wri+ 2 ( 1 i 1 Z ju)M,~~ ~ mj Z mjuAi

+ (Qw+wQ)rIi+ (ri+ u u)] (I-2)

.th
The force on the i particle is given by

i I i i
Fi=F + F + F

ss d kSS

Where Fd is representative of damping forces given solely as a
i

function of deformation derivatives; Fk is representative of deform-

ation and spin dependent stiffness forces; and F
i

is the steady
th Ss

state force on the i mass due to spin, independent of deformations.

The latter persists whether or not the structure is flexible and

cancels that portion of the centripetal acceleration independent of

deformations, i. e. ,

i ~~ i
F =QQFmss i

Equation (I-2) can then be written as

mi (.- Ei )+2miQ(i ,.w' mj u ) - Fd

+mi (ut 1 amuJ
)

i -i . ww)
i

i+(MX EmjuJ) - Fk= mi w-mi()r

(I-3)
A

With the structure spinning about the body z axis, term by term

expansion allows Equation (I-3) to take the form

F --

~ Lux zi k~mj~xj - kxmizx y

m Lu _ ( Zmjui ] - 2m.. 9 {ly X (Emji )x ] Dx

- mx - X ( Z~u)xg kx =mi({V y zW r)

-m. (-2Qw rI + Ow r i

)
(I-4a)

Z X X Z)
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-[.i 1 (Zmj.Uj)y] + 2m Qi'i - IZm u )] F
i

rl i y b obaiy

o- Reer[unc (Z mjuj)w] - Ft = mi(os rg - ra )

-m. (-2 aw ri+ Qw r) (I-4b)
i (- z y y z

m [ i / ( j )z ] Dz kz

y x x )y y(I-4

where the subscript denotes the corresponding components.

The rotational equation may be obtained from Equation (128)

of Reference 11 which represents the most general vector rotational

equation. Thus, after dropping terms representative of rigid rotors,

dampers, and elements of the appendage consisting of rigid bodies

(as opposed to particles), and premultiplying by {b}, equation (128)

of Reference 11 becomes

T=I + w I w + zrni [2 ( R + r 1 ) uiE

- (R+ ri) 
u

iT ui (
R + ri) ].+ rm i [2(R+ ri) uiE

(\R +r (L÷1]+Zi M 2(R+ T.u 

-1\ u-u r+)ru E_(R. +r ) u iT- ui(R+r i) ]M w+ mi [2 (R+ r ) u E

- (R+ri ) .iT_ i (R + ri)T]

~i Z " ~~ ZM.+wR Emiu +R rmnu +Rw rniu

~~~i)
+W w r i + Z (miu+wmi )(I-5)

1 *1)Mi 
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Where I is the inertia matrix of the spinning structure distorted

under steady spin but otherwise undeformed.

Prior to linearization the above equation may be simplified by

combining certain terms. In particular, consider the last six terms

wR mm.u +R r mRu~~~ mR+~~muu~~~~~~~~

i ~ + . .+Zr w)miu +R.m i u +Zr miu

Z (R + ri)w mi +'w(R+r)mj + R+ )mu~~~~~~~~~,r 

of which the first two terms combine to

~~i .i
wE(R + r )miu

which results from the vector identity

B x (A x C) + (A x B) x C = Ax (B x C)

Hence, the last five terms in (I-5) reduce to

w + i . i/ .. iwE (R- + r) zmi ~ 1R+ri miui

The result of which allows us to rewrite (I-5) as

T =I wI + I + mi [2 (R + r i ) u E

i iT i(R + r ) u- u (R + r)]

2 (R [+rl)Tui ( RE+ri)uiT u(R+ r) 

+ Zmi [2 (R+ ri) ui E - (R + ri)uiT ui(R +ri)T]

+ Z R mi i 1 + E (R+r ) mi
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i i
With the identity r = R + r and the substitution of w + Q for

w, the above becomes

* . ,.,* * -,*

T = I wv+wI 2 +QI w +QI Q

+ l Zmi[(2F riTui)E - uiriT riu iT] 

+ Zmi [(2 riTI) E - .i iT ri iT] 

+Xm~i riui+QOiuil (I-6)

Assuming that the structure is unforced and that the vector

basis in which the equations are written corresponds to a principal

axis (identified as A, B, and C) the above equation expands to

A wx-Qw (B-C) + 2 Zm
iy

+ Zm (ry i_ i riui
z z yz

B + Q wx(A-C) -_2Em
iy x

+ Z~ X Z

+ Zmi (Tii i ri )C* +m(ri x r yi x) + :
z ix y y X)

riui +riui )y z z y

M- 22 Q m ri F i = 0-212 mi x

(i ui + i i)Iru +Zu

-2Q mi r iA i = 0-20Z i z y
i. i i

2Q Zmi(.ili + rii)=o
(x x x y .y/

We shall now utilize the set of Equations (I-4) and (I-7) to

derive equations of motion of the simple particle model shown in

Figure 1. Expanding (I-4) for the two particle model one finds:
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Particle # 1 Equations

*. i I... 1 .. 2\ . rh1+.2\1 2 I1
*-1 m(^ul+ )-2Qjul-M(a + A + 2ruau~~~~~u -~ /x A /x x y.., x x x x

M21 in
_ l- Q x (U1x+ ux a x x = wz y

uy ~ (u +' )+ u2Q)[ ] (u +u2 )]+22w r l

z ~~*' \z / Z Z yy

.. t 1 m .1 m2)] + 2
ul

.. 1 m (-. + .2 2 2 =u - ow T

Particle # 2 Equations

..2 mn /.. ..2 \ .2 M .1 (Al ] .x2
u -m (u u - 2 iu -m u + u)] + 2 u

x x xy x x x

..21 ( M.2) - )] 2

~ 2 ([u2 _ )(ul + u2)] + g2u2 = - 2w F

..2 _ m (1 +2)+2 u2 +2 2= r

z Uz+r +2 + vT 

Z CX OZ Z Z Z Z ZX y y y

Rotational Equations

.. x Qw (hB C) + mQ r (U, u2x)+ x y 

Bw+ +Qwx(A-C) =0

yW- r(xX2 1 + _2) 

Y .~ Y(Uy Y Y
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In the above the superscript on the deformation variable denotes
2the particle under consideration (e. g., u corresponds to the second

A
particle deformation in the x direction), whereas the superscript

on the variable descriptive of the natural frequency is an exponent

(e.g. (ax2 implies u * ax).
X ~x 

It is observed that equations descriptive of w and w and
x yA

deformations in the z direction separate from the remaining set of

equations. This set, descriptive of the "wobble" motion, is

repeated below.

..1 m ( 21 1 U _ (Ul + U2 ) + 2 r ,J u2 + C2 U2 *- -2

~~~22
z u z z Z. z z z x y y y

The first two of the above equations can be replaced by their sum

and difference;

.. *2 .2 z 2 - 2 + -=

z y y yy

1B + u w +(A u = - +w r

where the sum of the first and second deformations is identified as

r and the difference as ., i.e.,

z z x y y y

1 2
I = -z + uz

1 2
Ju u - u 

With these definitions we can describe rl as the symmetrical mode

and p as the asymmetrical mode.
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It is clear that only the asymmetrical mode is of importance

since the symmetrical mode is uncoupled with the rotational equa-

tions. So that the equations descriptive of wobble motion can be

written as follows

Aw% -- w (B- C) +mt (i +Q2 .) = O (I-8a)
x y y 

B y + Q Wx(A- C) = 0 (I-8b)

j +2 Cz+ 2a 2 p +2f + 20 w = ° (I-8c)
z z y x y y
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APPENDIX II

LOADED FREQUENCY OF A MASSLESS CANTILEVERED
BEAM WITH A TIP MASS

Consider a massless cantilever beam of length r having a
0

tip mass m.

A
z

~XT
Uz

The bending stiffness when loaded in tension is

Ak =
z~~ 

kz tanh(ri) r ]3[l 1 - 0]

A
where k is the unloaded stiffness prescribed as a function of the

beams flexural rigidity EI and r o , i.e.,

A 3EI
z 3

0

and r1 is given as a function of the applied tensile force P due

solely to spin, to wit

2 P
= EI

2 -2p=m(r + A)2 =mf 2
o ~Y

The combination of the above permits the following:

*Taken from. a set of unpublished JPL notes written by E. Weiner.
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1212m~ Q2In
(r,)2= y o

(0o )El

- 2 A 3
y k F

z o

A ADefining az as k /m allows

Z X
- 2

2 3f' 2= y
(rio) = Ao A2 f

z 0

Substition into the expression for k results in the following

A 3 

Z

z ( 2r )~
. Z o

3 13z'

~ 3P
A
-Z rO

Therefore, A 2
k r1"
k -Z(y
m. (A2 )2 k ~r r'2A z azo

z m
~~_ -3

tanh y

~~so that II 3
so that Qz 'j ro
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1/2

( )
0

tanh ( / )

1 - z

z NIro

1/2

For small arguments the hyperbolic tangent function simplifies to:

tanh x - x

tanhx 1
x

- tanh x
x

1
1 -tanhx

x

A
zy
z

Q

x3 2x5
_ _ +
3 15

2 4x2 2x 4

3 15

2 1 2x
x (3 _ _i _ )

2
(1 + )5 

x3
X

L 1+
3 r
5 r

0

2]

Squaring both sides provides the following

A 2

( a 1 + 5 _
[1 5 Ir

o

For an extremely stiff rod i z r1 allowing the loaded frequency
y 0

approximation

2 2 +1.2A2
z z
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2

( Q) + ___]2 
k-



The approximated expression for the loaded frequency is compared

with the true expression in the table below. Certainly for A /0 > 1
zthe simplified expression is an excellent approximation.the simplified expression is an excellent approximation.

True Value

a' 2
( Z) = 

[1

1

tanh (,F3 0 )~n~(~ ~)
( mf ( )

]

Approximate Value

a 2
( Z) 

A a a 2 ar a
a (Uz)

~2 ( a) ( Q) ( Q) (-Q)
0 1.0 1.0 1.2 1.095

.1 1.061 1.030 1.21 1.1

.5 1.405 1.185 1.45 1.204

1 2. 184 1. 478 2.2 1.483

5 26. 199 5. 119 26.2 5. 119

10 101.20 10.06 101.20 10.06
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APPENDIX III

SUMMARY OF STABILITY CRITERIA

The following criteria have been formally established as
*

necessary conditions for asymptotic stability of spin.

C>A ANDC >B IN ALL MODELS

A
z

MODEL CRITERION

m0 Y-A (IW)
*-M v '-

A
z

A ((A)

- ( 2A^

m d 2

(C-B)

m (2
(C-A)

2red2
>

(C-B)

In some cases sufficiency has also been proven formally.
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MODEL

A
z

m

A
V

CRITERION

2(S 2
WQ) (C-A )

(W)2 >

^ ( O)>

2m d 2
1

2m d 2+C'-B'

2m1

2

2m2 2+C' -A'
2

w - loaded frequency
associated with m 1

a - loaded frequency
associated with m 2

> (C-A)md 2 +(C-B)m 2

(wQ) > (C-A) (C-B)
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A
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CRITERION

A (1)2
T[ 2]

-

6

(C-B)

rz =ry =o

T[ 2] 16
(C-A)
(C -A)

1 st Mode

2 2 2
(iw1 (C-A) 6y +(C-B) 6x

Q- > (C-A) (C-B)

Nth Mode (6 6 T 6 6 T) = 0
x y y x

T -1 T 
(C-A)6 T[2l6 +(C-B)6Tw ]

_ y X -
(C-A) (C-B)
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A
x

A
z

A
V

x 4

rz =o

( 1) 
- I

6
x

MODEL



CRITERION

rx = ry = o

Im

A
¥

r x =o

For k = oo
y

w 2 m 2

(x\) z(QTX) (C-A)

For k = oo
X

~w 2 m F 2
(Q)> (C-B)

k = oo
y

(wz)2

-~2m r
z

(C-A)

-- 2mlr
(C-B)(C -B)

k = oo
y

--2w 2 m 2
- > z

CO Q (C -A)

4mF- 
X

C

- 2w 2 m F'

(G-)> _ >-
mT Cz(C-A)- [

-~- + 4m T 2J[( 0)x
~

A
x
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A
z4Q

rT

1

A
z

,m

A
x

A
y

A
z

\4 ry =O

T
Tr

A
V

MODE L

( QT ) >



--HrFY --
A mZ m

k = oo
y

( 2 - 2

( ) (C-A) -Trz
4m 2

x
C

(w 2 m F 2(C-A) +r (C-B)

-i~) D

AV

where

D = (C-B). C -A)-
-2 

C(-S+4mf 2J

First Mode

A
z

hC + -> A and hC + > B

r z = 0o

12e 62
xl + yl

+-$
(C+_-A) (C+j72 B)

A
Y

A
x
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